[1] |
巨晓棠, 谷保静. 氮素管理的指标[J]. 土壤学报, 2017, 54(2):281-296
|
[2] |
蔡祖聪, 颜晓元, 朱兆良. 立足于解决高投入条件下的氮污染问题[J]. 植物营养与肥料学报, 2014, 20(1):1-6
|
[3] |
金树权, 陈若霞, 汪峰, 姚红燕, 谌江华. 不同氮肥运筹模式对稻田田面水氮浓度和水稻产量的影响[J]. 水土保持学报, 2020, 34(1):242-248
|
[4] |
李华, 陈英旭, 梁新强, 倪吾钟, 田光明. 浮萍对稻田田面水中氮素转化与可溶性氮的影响[J]. 水土保持学报, 2006(5):92-94
|
[5] |
叶鑫, 张鑫, 隋世江. 有机肥替代化肥氮对稻田田面水氮素浓度动态变化及产量的影响[J/OL]. 吉林农业大学学报, 2020: 1-10(2020-09-03)[2021-01-13]. https://doi.org/10.13327/j.jjlau.2020.5538https://doi.org/10.13327/j.jjlau.2020.5538
|
[6] |
Yao Y L, Zhang M, Tian Y H, Zhao M, Zhang B W, Zhao M, Zeng K, Yin B. Duckweed (Spirodela polyrhiza) as green manure for increasing yield and reducing nitrogen loss in rice production[J]. Field Crops Research, 2017, 214:273-282
DOI
URL
|
[7] |
Sun H J, Dan A, Feng Y F, Vithanage M, Mandal S, Shaheen S M, Rinklebe J, Shi W M, Wang H L. Floating duckweed mitigated ammonia volatilization and increased grain yield and nitrogen use efficiency of rice in biochar amended paddy soils[J]. Chemosphere, 2019, 237:124532
DOI
URL
|
[8] |
李阳, 成家杨, 钟钰, 唐杰. 浮萍多样性对富营养化水体净化效果的影响[J]. 南方农业学报, 2017, 48(2):259-265
|
[9] |
Ekperusi A O, Sikoki F D, Nwachukwu E O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective[J]. Chemosphere, 2019, 223:285-309
DOI
PMID
|
[10] |
沈根祥, 胡宏, 沈东升, 朱荫湄. 浮萍净化氮磷污水生长条件研究[J]. 农业工程学报, 2004(1):284-287
|
[11] |
吴雪飞. 浮萍去除和利用水体中不同形态氮的研究[D]. 扬州: 扬州大学, 2012
|
[12] |
Zimmo O R, van der Steen N P, Gijzen H J. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds[J]. Water Research, 2004, 38(4):913-920
URL
PMID
|
[13] |
谢朦, 张飞, 章莹颖, 秦霄, 马炯, 肖炘, 成家杨. 3种浮萍对富营养化水体的修复[J]. 环境工程学报, 2016, 10(5):2447-2453
|
[14] |
宋蝶, 何忠虎, 董永华, 戴巍, 杨晓磊, 曹林奎, 沙之敏. 沼液施用条件下添加浮萍对稻田氮素流失和Cu、Pb变化的影响[J]. 中国生态农业学报(中英文), 2020, 28(4):608-618
|
[15] |
吴磊. 不同地理种群紫萍对水体氮和磷净化能力的差异分析[D]. 福州: 福建农林大学, 2019
|
[16] |
Basiglini E, Pintore M, Forni C. Effects of treated industrial wastewaters and temperatures on growth and enzymatic activities of duckweed (Lemna minor L.)[J]. Ecotoxicology and Environmental Safety, 2018, 153:54-59
DOI
PMID
|
[17] |
王香莲, 高桂青, 刘博, 龚之涵, 罗瑾, 王锴, 徐晨晨, 卢天宇, 胡万聪, 吴代赦, 黄庭. 鄱阳湖流域浮萍种质资源分布及其对水环境因子的响应[J]. 应用与环境生物学报, 2020, 26(4):999-1008
|
[18] |
何令令, 孙兆惠, 杨虎. 浮萍对稻田生态中水稻的影响[J]. 南方农机, 2017, 48(11):46-51
|
[19] |
Mohedano R A, Tonon G, Costa R H R, Pelissari C, Belli F. Does duckweed ponds used for wastewater treatment emit or sequester greenhouse gases?[J]. Science of the Total Environment, 2019, 691:1043-1050
DOI
|
[20] |
蔡树美. 不同条件下浮萍磷吸收效率及其作用机理[D]. 扬州: 扬州大学, 2011
|
[21] |
夏倩, 刘凌, 王流通, 钱宝. 连续流动分析仪在水质分析中的应用[J]. 分析仪器, 2012(2):64-68
|
[22] |
Yang W L, Que H L, Wang S W, Zhu A N, Zhang Y J, He Y, Xin X L, Zhang X F, Ding S J. High temporal resolution measurements of ammonia emissions following different nitrogen application rates from a rice field in the Taihu Lake Region of China[J]. Environmental Pollution, 2020, 257:113489
DOI
URL
|
[23] |
Sun H J, Zhang H L, Min J, Feng Y F, Shi W M. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater[J]. Paddy and Water Environment, 2016, 14(1):105-111
DOI
URL
|
[24] |
沈根祥, 姚芳, 胡宏, 倪吾钟, 朱荫湄. 浮萍吸收不同形态氮的动力学特性研究[J]. 土壤通报, 2006(3):505-508
|
[25] |
杨国英, 郭智, 刘红江, 王鑫, 陈留根. 稻田氨挥发影响因素及其减排措施研究进展[J]. 生态环境学报, 2020, 29(9):1912-1919
|
[26] |
侍远. 浮萍对氮磷的吸收和能源化利用研究[D]. 合肥: 合肥工业大学, 2013
|
[27] |
Li H, Liang X Q, Lian Y F, Xu L, Chen Y X. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields[J]. Soil Science Society of America Journal, 2009, 73(6):1890-1895
DOI
URL
|
[28] |
种云霄, 胡洪营, 钱易. 无机氮化合物及pH值对紫背浮萍生长的影响[J]. 中国环境科学, 2003(4):82-86
|
[29] |
种云霄, 胡洪营, 钱易. 细脉浮萍和紫背浮萍在污水营养条件下的生长特性[J]. 环境科学, 2004(6):59-64
|
[30] |
Caicedo J, van der Steen N P, Arce O, Gijzen H J. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza)[J]. Water Research, 2000, 34(15):3829-3835
DOI
URL
|