Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (12): 2830-2840.DOI: 10.11869/j.issn.100-8551.2021.12.2830
• Isotope Tracer Technique·Ecology and Environment·Physiology • Previous Articles Next Articles
TANG Jie1(), CHEN Zhiqing1, GUO Annan2,*(
), QIU Qiongfen1
Received:
2020-12-01
Revised:
2021-05-17
Online:
2021-12-10
Published:
2021-10-25
Contact:
GUO Annan
通讯作者:
郭安南
作者简介:
唐杰,男,主要从事微生物生态研究。E-mail: 407163539@qq.com
基金资助:
TANG Jie, CHEN Zhiqing, GUO Annan, QIU Qiongfen. Characteristics of Microbial Community Structure in the Rhizosphere Soil of Different Crops[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2830-2840.
唐杰, 陈知青, 郭安南, 裘琼芬. 不同作物根际土壤微生物的群落结构特征分析[J]. 核农学报, 2021, 35(12): 2830-2840.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.12.2830
作物 Crop | 铵态氮 N /(mg·kg-1) | 硝态氮 N /(mg·kg-1) | pH值 pH value |
---|---|---|---|
大豆 Soybean | 5.36±1.08b | 1.41±0.03cd | 4.25±0.17bc |
玉米 Maize | 4.13±0.59bc | 1.46±0.07bcd | 3.61±0.08e |
花生 Peanut | 4.76±0.60bc | 1.59±0.08a | 3.70±0.15de |
四季豆 Kidney bean | 4.99±0.41b | 1.54±0.08ab | 3.70±0.11de |
豇豆 Cowpea | 3.64±0.49c | 1.43±0.10cd | 3.95±0.05cd |
番薯 Sweet potato | 5.10±0.83b | 1.41±0.05d | 4.85±0.50a |
芋艿 Cocoyam | 32.83±1.67a | 1.44±0.07cd | 4.41±0.18b |
Table 1 Difference in physical and chemical parameters of different crop rhizosphere soils
作物 Crop | 铵态氮 N /(mg·kg-1) | 硝态氮 N /(mg·kg-1) | pH值 pH value |
---|---|---|---|
大豆 Soybean | 5.36±1.08b | 1.41±0.03cd | 4.25±0.17bc |
玉米 Maize | 4.13±0.59bc | 1.46±0.07bcd | 3.61±0.08e |
花生 Peanut | 4.76±0.60bc | 1.59±0.08a | 3.70±0.15de |
四季豆 Kidney bean | 4.99±0.41b | 1.54±0.08ab | 3.70±0.11de |
豇豆 Cowpea | 3.64±0.49c | 1.43±0.10cd | 3.95±0.05cd |
番薯 Sweet potato | 5.10±0.83b | 1.41±0.05d | 4.85±0.50a |
芋艿 Cocoyam | 32.83±1.67a | 1.44±0.07cd | 4.41±0.18b |
作物 Crop | 大豆 Soybean | 玉米 Maize | 花生 Peanut | 四季豆 Kidney bean | 豇豆 Cowpea | 番薯 Sweet potato | 芋艿 Cocoyam |
---|---|---|---|---|---|---|---|
厌氧细菌 Anaerobic bacteria | 0.49±0.04ab | 0.39±0.04bc | 0.54±0.02a | 0.35±0.02c | 0.30±0.03c | 0.41±0.08abc | 0.37±0.05bc |
革兰氏阳性菌 G+ | 3.96±0.24ab | 3.76±0.64ab | 5.24±0.25a | 2.71±0.32b | 2.33±0.45b | 2.92±0.74b | 3.61±0.45ab |
革兰氏阴性菌 G- | 3.51±0.05bc | 4.13±0.35b | 5.21±0.22a | 2.89±0.25c | 3.05±0.32c | 3.27±0.32c | 2.89±0.12c |
Ⅰ型甲烷氧化菌 Meth Ⅰ | 1.61±0.05b | 1.88±0.27b | 3.05±0.16a | 1.23±0.13b | 1.29±0.22b | 1.72±0.37b | 1.75±0.23b |
Ⅱ型甲烷氧化菌 Meth Ⅱ | 1.41±0.13b | 1.39±0.16b | 2.44±0.11a | 0.92±0.09c | 1.20±0.08bc | 1.26±0.15bc | 1.28±0.12b |
放线菌 Actinomycetes | 1.46±0.06b | 1.24±0.17bc | 2.26±0.15a | 1.02±0.10c | 0.94±0.17c | 1.07±0.19bc | 1.45±0.11b |
真菌 Fungi | 2.13±0.05bc | 2.64±0.29ab | 3.42±0.33a | 1.76±0.20c | 2.77±0.26b | 2.14±0.23bc | 1.49±0.18c |
原生动物 Protozoa | 0.46±0.01ab | 0.41±0.04bc | 0.55±0.04a | 0.29±0.03d | 0.34±0.03cd | 0.42±0.04bcd | 0.29±0.04d |
其他细菌 Other bacteria | 6.03±0.22abc | 6.92±0.96ab | 7.53±039a | 4.70±0.30c | 5.57±0.83bc | 5.31±0.90bc | 4.61±0.49c |
总PLFAs含量 Total contents of PLFAs | 21.06±0.66bc | 22.77±2.80b | 30.24±1.19a | 15.89±1.06c | 17.78±2.31bc | 18.52±2.92bc | 17.74±1.75bc |
Table 2 Total phospholipid fatty acids (PLFAs) and microbial compositions of rhizosphere soils across different crops/(ng·g-1)
作物 Crop | 大豆 Soybean | 玉米 Maize | 花生 Peanut | 四季豆 Kidney bean | 豇豆 Cowpea | 番薯 Sweet potato | 芋艿 Cocoyam |
---|---|---|---|---|---|---|---|
厌氧细菌 Anaerobic bacteria | 0.49±0.04ab | 0.39±0.04bc | 0.54±0.02a | 0.35±0.02c | 0.30±0.03c | 0.41±0.08abc | 0.37±0.05bc |
革兰氏阳性菌 G+ | 3.96±0.24ab | 3.76±0.64ab | 5.24±0.25a | 2.71±0.32b | 2.33±0.45b | 2.92±0.74b | 3.61±0.45ab |
革兰氏阴性菌 G- | 3.51±0.05bc | 4.13±0.35b | 5.21±0.22a | 2.89±0.25c | 3.05±0.32c | 3.27±0.32c | 2.89±0.12c |
Ⅰ型甲烷氧化菌 Meth Ⅰ | 1.61±0.05b | 1.88±0.27b | 3.05±0.16a | 1.23±0.13b | 1.29±0.22b | 1.72±0.37b | 1.75±0.23b |
Ⅱ型甲烷氧化菌 Meth Ⅱ | 1.41±0.13b | 1.39±0.16b | 2.44±0.11a | 0.92±0.09c | 1.20±0.08bc | 1.26±0.15bc | 1.28±0.12b |
放线菌 Actinomycetes | 1.46±0.06b | 1.24±0.17bc | 2.26±0.15a | 1.02±0.10c | 0.94±0.17c | 1.07±0.19bc | 1.45±0.11b |
真菌 Fungi | 2.13±0.05bc | 2.64±0.29ab | 3.42±0.33a | 1.76±0.20c | 2.77±0.26b | 2.14±0.23bc | 1.49±0.18c |
原生动物 Protozoa | 0.46±0.01ab | 0.41±0.04bc | 0.55±0.04a | 0.29±0.03d | 0.34±0.03cd | 0.42±0.04bcd | 0.29±0.04d |
其他细菌 Other bacteria | 6.03±0.22abc | 6.92±0.96ab | 7.53±039a | 4.70±0.30c | 5.57±0.83bc | 5.31±0.90bc | 4.61±0.49c |
总PLFAs含量 Total contents of PLFAs | 21.06±0.66bc | 22.77±2.80b | 30.24±1.19a | 15.89±1.06c | 17.78±2.31bc | 18.52±2.92bc | 17.74±1.75bc |
Fig.1 The ratios of fungi to bacteria and G+to G- PLFAs under rhizosphere soils of different crops Note: Different lowercase letters in the same column mean significant difference at 0.05 level. The same as following.
作物 Crop | Shannon指数 Shannon index | Chao1指数 Chao1 index | ACE指数 ACE index | Coverage指数 Coverage index |
---|---|---|---|---|
大豆 Soybean | 10.68±0.05a | 15 225.94±525.34a | 15 878.82±492.79a | 0.891±0.003c |
玉米 Maize | 10.19±0.37b | 13 739.12±1 133.41b | 14 452.97±1 186.48ab | 0.902±0.008b |
花生 Peanut | 9.76±0.31c | 13 120.50±1 493.70b | 14 022.71±1 569.07b | 0.906±0.010b |
四季豆 Kidney bean | 10.51±0.07a | 15 060.43±252.29a | 15 838.52±380.20a | 0.893±0.003c |
豇豆 Cowpea | 9.81±0.03c | 13 237.89±308.28b | 14 272.82±627.59b | 0.905±0.004b |
番薯 Sweet potato | 10.59±0.09a | 13 430.67±992.83b | 14 031.71±1 253.41b | 0.902±0.008bc |
芋艿 Cocoyam | 9.76±0.18c | 11 674.89±509.86c | 12 242.88±669.29c | 0.917±0.004a |
Table 3 Statistics of microbial Alpha diversity index in the soil samples.
作物 Crop | Shannon指数 Shannon index | Chao1指数 Chao1 index | ACE指数 ACE index | Coverage指数 Coverage index |
---|---|---|---|---|
大豆 Soybean | 10.68±0.05a | 15 225.94±525.34a | 15 878.82±492.79a | 0.891±0.003c |
玉米 Maize | 10.19±0.37b | 13 739.12±1 133.41b | 14 452.97±1 186.48ab | 0.902±0.008b |
花生 Peanut | 9.76±0.31c | 13 120.50±1 493.70b | 14 022.71±1 569.07b | 0.906±0.010b |
四季豆 Kidney bean | 10.51±0.07a | 15 060.43±252.29a | 15 838.52±380.20a | 0.893±0.003c |
豇豆 Cowpea | 9.81±0.03c | 13 237.89±308.28b | 14 272.82±627.59b | 0.905±0.004b |
番薯 Sweet potato | 10.59±0.09a | 13 430.67±992.83b | 14 031.71±1 253.41b | 0.902±0.008bc |
芋艿 Cocoyam | 9.76±0.18c | 11 674.89±509.86c | 12 242.88±669.29c | 0.917±0.004a |
Fig.3 Non-metric multidimensional scaling analysis(NMDS) of microorganism community composition based on the relative abundance of bacterial OTUs (A) and PLFAs (B) data
Fig.5 Heat map of the relative abundances of the 12 screened indicator taxa for rhizosphere soil samples collected from different crops. Note: Abbreviation in figure as: SO as Soybean, MA as Maize, PE as Peanut, KB as Kidney bean,CP as Cowpea, SP as Sweet potato, CO as Cocoyam.
[1] |
Berendsen R L, Pieterse C M, Bakker P A. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8):478-486
DOI URL PMID |
[2] |
Geng L L, Shao G X, Raymond B, Wang M L, Sun X X, Shu C L, Zhang J. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome[J]. Microbiological Research, 2018, 211:13-20
DOI URL |
[3] | Allison S D, Weintraub M N, Gartner T B, Waldrop M P. Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function[J]. Soil Enzymology, 2010, 22:229-243 |
[4] | Alkorta I, Aizpurua A, Riga P, Albizu I, Amézaga I, Garbisu C. Soil enzyme activities as biological indicators of soil health[J]. Reviews in Environmental Health, 2003, 18(1):65-73 |
[5] | Preston G M. Plant perceptions of plant growth-promoting Pseudomonas[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2004, 359(1446):907-918 |
[6] | Meena K K, Sorty A M, Bitla U M, Choudhary K, Gupta P, Pareek A, Singh D P, Prabha R, Sahu P K, Gupta Ⅴ K, Singh H B, Krishanani K K, Minhas P S. Abiotic stress responses and microbe-mediated mitigation in plants: The omics strategies[J]. Frontiers in Plant Science, 2017, 8:172 |
[7] |
Van Der Heijden M G, Bardgett R D, Van Straalen N M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters, 2008, 11(3):296-310
PMID |
[8] |
Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review[J]. Biology and Fertility of Soils, 2015, 51(4):403-415
DOI URL |
[9] |
Ling N, Deng K, Song Y, Wu Y C, Zhao J, Raza W, Huang Q W, Shen Q R. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a novel bioorganic fertilizer[J]. Microbiological Research, 2014, 169(7/8):570-578
DOI URL |
[10] |
Wintermans P C, Bakker P A, Pieterse C M. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria[J]. Plant Molecular Biology, 2016, 90(6):623-634
DOI PMID |
[11] | 陈伟立, 李娟, 朱红惠, 陈杰忠, 姚青. 根际微生物调控植物根系构型研究进展[J]. 生态学报, 2016, 36(17):5285-5297 |
[12] |
Lundberg D S, Lebeis S L, Paredes S H, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin Ⅴ, Del Rio T G, Edgar R C, Eickhorst T, Ley R E, Hugenholtz P, Tringe S G, Dangl J L. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488(7409):86-90
DOI URL |
[13] |
Schreiter S, Ding G C, Heuer H, Neumann G, Sandmann M, Grosch R, Kropf S, Smalla K. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce[J]. Frontiers in Microbiology, 2014, 5:144
DOI PMID |
[14] | 刘思, 徐国前, 张军翔. 葡萄行内覆盖对土壤细菌群落结构的影响[J]. 核农学报, 2020, 34(12):2865-2871 |
[15] |
Li H, Yang X R, Weng B S, Su J Q, Nie S, Gilbert J A, Zhou Y G. The phenological stage of rice growth determines anaerobic ammonium oxidation activity in rhizosphere soil[J]. Soil Biology and Biochemistry, 2016, 100:59-65
DOI URL |
[16] | 洪磊, 张瑜, 苏胜利, 秦似杰, 金鸣, 唐玉琴. 不同药用植物根际微生物区系分析[J]. 轻工科技, 2015, 31(5):105-107 |
[17] | 李慧, 李雪梦, 姚庆智, 李强. 基于Biolog-ECO方法的两种不同草原中5种不同植物根际土壤微生物群落特征[J]. 微生物学通报, 2020, 47(9):2947-2958 |
[18] | 李欣玫, 左易灵, 薛子可, 张琳琳, 赵丽莉, 贺学礼. 不同荒漠植物根际土壤微生物群落结构特征[J]. 生态学报, 2018, 38(8):2855-2863 |
[19] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1981 |
[20] |
Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadian Journal of Biochemistry and Physiology, 1959, 37(8):911-917
DOI URL |
[21] | Pisano M A, Sommer M J, Taras L. Bioactivity of chitinolytic actinomycetes of marine origin[J]. Applied Microbiology and Biotechnology, 1992, 36(4):553-555 |
[22] | Sahu M K, Sivakumar K, Thangaradjou T, Kannan L. Phosphate solubilizing actinomycetes in the estuarine environment: An inventory[J]. Journal of Environmental Biology, 2007, 28(4):795-798 |
[23] | Weyland H. Actinomycetes in north sea and Alantic ocean sediments[J]. Nature, 1969, 223(5208):858 |
[24] |
Magoc T, Salzberg S L. FLASH: Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics (Oxford, England), 2011, 27(21):2957-2963
DOI URL |
[25] |
Caporaso J G, Bittinger K, Bushman F D, DeSantis T Z, Andersen G L, Knight R. PyNAST: A flexible tool for aligning sequences to a template alignment[J]. Bioinformatics (Oxford, England), 2010, 26(2):266-267
DOI URL |
[26] |
Sugiyama A, Unno Y, Ono U, Yoshikawa E, Suzuki H, Minamisawa K, Yazaki K. Assessment of bacterial communities of black soybean grown in fields[J]. Communicative and Integrative Biology, 2017, 10(5/6):e1378290
DOI URL |
[27] |
Chen M N, Liu H, Yu S L, Wang M, Pan L J, Chen N, Wang T, Chi X Y, Du B H. Long-term continuously monocropped peanut significantly changed the abundance and composition of soil bacterial communities[J]. PeerJ, 2020, 8:e9024
DOI URL |
[28] |
Wei H W, Wang L H, Hassan M, Xie B. Succession of the functional microbial communities and the metabolic functions in maize straw composting process[J]. Bioresource Technology, 2018, 256:333-341
DOI URL |
[29] |
Pérez-Jaramillo J E, Carrión V J, Bosse M, Ferrão L F V, de Hollander M, Garcia A A F, Ramírez C A, Mendes R, Raaijmakers J M. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits[J]. The ISME Journal, 2017, 11(10):2244-2257
DOI URL |
[30] |
Johnston-Monje D, Lundberg D S, Lazarovits G, Reis V M, Raizada M N. Bacterial populations in juvenile maize rhizospheres originate from both seed and soil[J]. Plant Soil, 2016, 405(1):337-355
DOI URL |
[31] |
Schmalenberger A, Kertesz M A. Desulfurization of aromatic sulfonates by rhizosphere bacteria: High diversity of the asfa gene[J]. Environmental Microbiology, 2007, 9(2):535-545
PMID |
[32] |
Kundan R, Pant G, Jadon N, Agrawal P. Plant growth promoting rhizobacteria: Mechanism and current prospective[J]. Journal of Reproduction and Fertility, 2015, 6(2):1-9
DOI URL |
[33] | 刘金光, 李孝刚, 王兴祥. 连续施用有机肥对连作花生根际微生物种群和酶活性的影响[J]. 土壤, 2018, 50(2):305-311 |
[34] |
Mendes L W, Kuramae E E, Navarrete A A, van Veen J A, Tsai S M. Taxonomical and functional microbial community selection in soybean rhizosphere[J]. The ISME Journal, 2014, 8(8):1577-1587
DOI URL |
[35] |
Wang P, Marsh E L, Ainsworth E A, Leakey A D B, Sheflin A M, Schachtman D P. Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3[J]. Scientific Reports, 2017, 7(1):1-12
DOI URL |
[36] |
Dai L X, Zhang G Z, Yu Z P, Ding H, Xu Y, Zhang Z M. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil[J]. International Journal of Molecular Sciences, 2019, 20(9):1-17
DOI URL |
[37] |
Reis V M, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, Mavingui P, Baldani V L D, Schmid M, Baldani J I, Balandreau J, Hartmann A, Caballero-Mellado J. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(6):2155-2162
DOI URL |
[38] |
Haldar S, Choudhury S R, Sengupta S. Genetic and functional diversities of bacterial communities in the rhizosphere of Arachis hypogaea[J]. Antonie van Leeuwenhoek, 2011, 100(1):161-170
DOI URL |
[39] | 黄文茂, 韩丽珍, 王欢. 两株芽孢杆菌对花生幼苗生长及其根际土壤微生物群落结构的影响[J]. 微生物学通报, 2020, 47(11):3551-3563 |
[40] |
Ryan R P, Vorhölter F J, Potnis N, Jones J B, Van Sluys M A, Bogdanove A J, Dow J M. Pathogenomics of Xanthomonas: Understanding bacterium-plant interactions[J]. Nature Reviews Microbiology, 2011, 9(5):344-355
DOI URL |
[41] |
Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla F M, De Vicente A, Perez-Garcia A. The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits[J]. Molecular Plant-Microbe Interactions, 2011, 24(12):1540-1552
DOI PMID |
[42] | 何汉生, 蒋慧汉, 关兆祥, 朱庆华, 林利平. 菜豆和长豇豆细菌性斑点病的初步鉴定及品种抗病力比较[J]. 广东农业科学, 1989(6):36-38, 35 |
[43] |
Jones R T, Robeson M S, Lauber C L, Hamady M, Knight R, Fierer N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses[J]. The ISME Journal, 2009, 3(4):442-453
DOI URL |
[44] | 刘亚军, 马琨, 李越, 杜春凤, 李倩, 李贺, 马玲, 汪春明. 马铃薯间作栽培对土壤微生物群落结构与功能的影响[J]. 核农学报, 2018, 32(6):1186-1194 |
[45] |
Liu C X, Dong Y H, Hou L Y, Deng N, Jiao R Z. Acidobacteria community responses to nitrogen dose and form in Chinese fir plantations in southern China[J]. Current Microbiology, 2017, 74(3):396-403
DOI URL |
[46] | Niu B, Paulson J N, Zheng X Q, Kolter R. Simplified and representative bacterial community of maize roots[J]. Proceedings of the National Academy of Sciences of the United States of America. 2017, 114(12):E2450-E2459 |
[47] |
Berlanas C, Berbegal M, Elena G, Laidani M, Cibriain J F, Sagües A, Gramaje D. The fungal and bacterial rhizosphere microbiome associated with grapevine rootstock genotypes in mature and young vineyards[J]. Frontiers in Microbiology, 2019, 10:1142
DOI PMID |
[48] |
Bonito G, Benucci G M N, Hameed K, Weighill D, Jones P, Chen K H, Jacobson D, Schadt C, Vilgalys R. Fungal-bacterial networks in the Populus rhizobiome are impacted by soil properties and host genotype[J]. Frontiers in Microbiology, 2019, 10:481
DOI URL |
[49] |
Grayston S J, Wang S Q, Campbell C D, Edwards A C. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biology and Biochemistry, 1998, 30(3):369-378
DOI URL |
[50] |
Garbeva P, Van Veen J A, Van Elsas J D. Microbial diversity in soil: Selection microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology, 2004, 42:243-270
PMID |
[51] |
Six J, Frey S D, Thiet R K, Batten K M. Bacterial and fungal contributions to carbon sequestration in agroecosystems[J]. Soil Science Society of America Journal, 2006, 70(2):555-569
DOI URL |
[52] |
Ingwersen J, Poll C, Streck T, Kandeler E. Micro-scale modelling of carbon turnover driven by microbial succession at a biogeochemical interface[J]. Soil Biology and Biochemistry, 2008, 40(4):864-878
DOI URL |
[53] |
Liu M H, Sui X, Hu Y B, Feng F J. Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China[J]. BMC Microbiology, 2019, 19(1):218
DOI URL |
[54] | 张冰冰, 万晓华, 杨军钱, 王涛, 黄志群. 不同凋落物质量对杉木人工林土壤微生物群落结构的影响[J]. 土壤学报, 2021, 58(4):1040-1049 |
[55] | Tian D, Jiang L, Ma S H, Fang W J, Schmid B, Xu L C, Zhu J X, Li P, Losapio G, Jing X, Zheng C Y, Shen H H, Xu X N, Zhu B, Fang J Y. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China[J]. The Science of the Total Environment, 2017, 607- 608:1367-1375 |
[56] |
Chaparro J M, Badri D Ⅴ, Vivanco J M. Rhizosphere microbiome assemblage is affected by plant development[J]. The ISME Journal, 2014, 8(4):790-803
DOI URL |
[57] |
Zhao M L, Zhao J, Yuan J, Hale L, Wen T, Huang Q W, Vivanco J M, Zhou J Z, Kowalchuk G A, Shen Q R. Root exudates drive soil-microbe-nutrient feedbacks in response to plant growth[J]. Plant, Cell and Environment, 2021, 44(2):613-628
DOI URL |
[58] | Phazna D, Sahoo D, Setti A, Sharma C, Kalita M C, Indira D S. Bacterial rhizosphere community profile at different growth stages of Umorok (Capsicum chinense) and its response to the root exudates[J]. International Microbiology: The Official Journal of the Spanish Society for Microbiology, 2020, 23(2):241-251 |
[59] | Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K. Changes in the bacterial community of soybean rhizospheres during growth in the field[J]. Public Library of Science One, 2014, 9(6):e100709 |
[1] | WANG Zhongtang, SHA Jianchuan, XIE Xiaofeng, MENG Xiaoye, ZHAO Dengchao, PENG Ling, ZHANG Qiong. Effects of Different Grasses Cultivation on Soil Nutrient and Bacterial Community in Chinese Jujube Orchard [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 456-465. |
[2] | MA Caixia, LIANG Qi, WANG Xiangzhu, LIU Ying. The Bacterial Community Diversity of Traditional Fermented Yak Milk in Gannan of Gansu [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 154-162. |
[3] | XIAO Liting, YANG Huilin, HUANG Wenxin, FU Xueqin. Effects of Grass Cultivation on Soil Microbial Community Structure and Functional Characteristics in Nanfeng Tangerine Orchard [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 190-200. |
[4] | ZHANG Qiling, PENG Ling, CHEN Xuemei, XU Yuanfang, ZHOU Yiji, FENG Yanyong, LI Wenge. The Composition and Changes of Fungi Community During Processing of Edible Betelnut [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2541-2550. |
[5] | HU Junjie, SHI Changqing, ZHANG Yong, WANG Juanhong, CHANG Weihua. The Study of Candidate miRNA of Sexual Maturity Period Ovarian Tissue of Gansu Alpine Fine Wool Sheep [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(1): 50-57. |
[6] | LIU Shuang, QIAO Yu, WANG Fang, HAN Xu, JIN Xiaoxia, CHI Chunyu, YU Lijie, DING Guohua. Screening of Genes Induced by Salicylic Acid in Cucumber Based on Digital Gene Expression Profiling [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(5): 874-884. |
[7] | ZHAO Zhen-qing, GU Hong-hui, SHENG Xiao-guang, YU Hui-fang, WANG Jian-sheng, CAO Jia-shu. Advances and Applications in Crop Quantitative Trait Locus [J]. Journal of Nuclear Agricultural Sciences, 2014, 28(9): 1615-1624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||