Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (11): 2501-2511.DOI: 10.11869/j.issn.100-8551.2021.11.2501
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
TIE Yuanyu1(), TIAN Jie1,2,*(
)
Received:
2021-03-17
Accepted:
2021-05-17
Online:
2021-11-10
Published:
2021-09-18
Contact:
TIAN Jie
通讯作者:
田洁
作者简介:
铁原毓,女,主要从事蔬菜分子生物学研究。E-mail: healer2727@163.com
基金资助:
TIE Yuanyu, TIAN Jie. Cloning and Expression Analysis of Sucrose: Sucrose 1-Fructosyltransferase As-1-SST Gene in Garlic[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2501-2511.
铁原毓, 田洁. 大蒜蔗糖:蔗糖1-果糖基转移酶基因As-1-SST的克隆与表达分析[J]. 核农学报, 2021, 35(11): 2501-2511.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.11.2501
植物种类 Plant species | 氨基酸残 基数 Number of amino acid | 理论相对 分子质量 Theoretical relative molecular mass/kDa | 理论等电点 Theoretical pI | 酸性氨基 酸比例 Rate of acidic amino acid/% | 碱性氨基 酸比例 Rate of basic amino acid/% | 脂肪族氨 基酸比例 Rate of aliphatic amino acid/% | 芳香族氨 基酸比例 Rate of aromatic amino acid/% |
---|---|---|---|---|---|---|---|
大蒜 Allium sativum L. | 623 | 69.76 | 5.19 | 12.1 | 11.3 | 79.3 | 11.7 |
洋葱 Allium cepa L. | 623 | 69.55 | 5.32 | 12.6 | 12.1 | 79.0 | 11.6 |
太匮龙舌兰 Agave tequilana L. | 621 | 69.81 | 5.67 | 11.3 | 11.7 | 73.8 | 11.8 |
芦笋 Asparagus officinalis L. | 628 | 70.08 | 5.50 | 11.7 | 11.9 | 80.3 | 11.2 |
菊芋 Helianthus tuberosus L. | 630 | 70.94 | 5.10 | 12.3 | 10.9 | 79.9 | 11.5 |
菊苣 Cichorium intybus L. | 640 | 71.67 | 5.17 | 11.8 | 10.9 | 80.4 | 11.1 |
高粱 Sorghum bicolor L. Moench | 674 | 73.42 | 5.76 | 11.3 | 11.9 | 82.5 | 10.0 |
洋蓟 Cynara cardunculus var. scolymus | 637 | 71.27 | 5.33 | 11.6 | 11.3 | 78.8 | 11.5 |
高羊茅 Lolium arundinaceum | 654 | 71.38 | 4.87 | 12.1 | 10.1 | 82.1 | 9.9 |
扫帚黍 Dichanthelium oligosanthes | 677 | 74.11 | 5.81 | 10.9 | 11.9 | 80.3 | 10.3 |
糜子 Panicum miliaceum L. | 675 | 73.25 | 5.83 | 10.6 | 11.6 | 81.4 | 9.7 |
药用蒲公英 Taraxacum officinale | 632 | 70.95 | 5.05 | 12.6 | 11.2 | 80.0 | 11.2 |
小米 Setaria italica L. Beauv. | 668 | 72.72 | 5.92 | 10.6 | 11.7 | 81.0 | 9.8 |
黑麦草 Lolium perenne L. | 653 | 71.45 | 5.23 | 11.7 | 11.1 | 81.7 | 9.9 |
大麦 Hordeum vulgare L. | 662 | 72.44 | 5.08 | 12.1 | 10.8 | 80.6 | 11.0 |
黑麦 Secale cereale L. | 661 | 72.19 | 5.08 | 12.1 | 10.9 | 81.1 | 10.9 |
普通小麦 Triticum aestivum L. | 662 | 72.61 | 5.00 | 12.5 | 10.9 | 80.8 | 11.3 |
硬粒小麦 Triticum turgidum subsp. Durum | 662 | 72.62 | 5.14 | 12.3 | 11.2 | 80.5 | 11.6 |
Table 1 Analysis of amino acid composition and physicochemical properities of 1-SST from different plants
植物种类 Plant species | 氨基酸残 基数 Number of amino acid | 理论相对 分子质量 Theoretical relative molecular mass/kDa | 理论等电点 Theoretical pI | 酸性氨基 酸比例 Rate of acidic amino acid/% | 碱性氨基 酸比例 Rate of basic amino acid/% | 脂肪族氨 基酸比例 Rate of aliphatic amino acid/% | 芳香族氨 基酸比例 Rate of aromatic amino acid/% |
---|---|---|---|---|---|---|---|
大蒜 Allium sativum L. | 623 | 69.76 | 5.19 | 12.1 | 11.3 | 79.3 | 11.7 |
洋葱 Allium cepa L. | 623 | 69.55 | 5.32 | 12.6 | 12.1 | 79.0 | 11.6 |
太匮龙舌兰 Agave tequilana L. | 621 | 69.81 | 5.67 | 11.3 | 11.7 | 73.8 | 11.8 |
芦笋 Asparagus officinalis L. | 628 | 70.08 | 5.50 | 11.7 | 11.9 | 80.3 | 11.2 |
菊芋 Helianthus tuberosus L. | 630 | 70.94 | 5.10 | 12.3 | 10.9 | 79.9 | 11.5 |
菊苣 Cichorium intybus L. | 640 | 71.67 | 5.17 | 11.8 | 10.9 | 80.4 | 11.1 |
高粱 Sorghum bicolor L. Moench | 674 | 73.42 | 5.76 | 11.3 | 11.9 | 82.5 | 10.0 |
洋蓟 Cynara cardunculus var. scolymus | 637 | 71.27 | 5.33 | 11.6 | 11.3 | 78.8 | 11.5 |
高羊茅 Lolium arundinaceum | 654 | 71.38 | 4.87 | 12.1 | 10.1 | 82.1 | 9.9 |
扫帚黍 Dichanthelium oligosanthes | 677 | 74.11 | 5.81 | 10.9 | 11.9 | 80.3 | 10.3 |
糜子 Panicum miliaceum L. | 675 | 73.25 | 5.83 | 10.6 | 11.6 | 81.4 | 9.7 |
药用蒲公英 Taraxacum officinale | 632 | 70.95 | 5.05 | 12.6 | 11.2 | 80.0 | 11.2 |
小米 Setaria italica L. Beauv. | 668 | 72.72 | 5.92 | 10.6 | 11.7 | 81.0 | 9.8 |
黑麦草 Lolium perenne L. | 653 | 71.45 | 5.23 | 11.7 | 11.1 | 81.7 | 9.9 |
大麦 Hordeum vulgare L. | 662 | 72.44 | 5.08 | 12.1 | 10.8 | 80.6 | 11.0 |
黑麦 Secale cereale L. | 661 | 72.19 | 5.08 | 12.1 | 10.9 | 81.1 | 10.9 |
普通小麦 Triticum aestivum L. | 662 | 72.61 | 5.00 | 12.5 | 10.9 | 80.8 | 11.3 |
硬粒小麦 Triticum turgidum subsp. Durum | 662 | 72.62 | 5.14 | 12.3 | 11.2 | 80.5 | 11.6 |
Fig.9 Relative expression levels of As-1-SST gene in different garlic tissues Note: Different lowercase letters indicate significant differences at 0.05 level. The same as following.
Fig.10 Relative expression levels of As-1-SST gene under low temperature and drought stress in garlic Note: A, E: Root. B, F: Pseudostem. C, G: Leaf. D, H: Scale bud.
[1] | 杨晓红, 陈晓阳. 果聚糖对植物抗逆性的影响及相应基因工程研究进展[J]. 华北农学报, 2006, 21(1):6-11 |
[2] |
Wim V D E, Sara K, El-Esawe S K. Sucrose signaling pathways leading to fructan and anthocyanin accumulation: A dual function in abiotic and biotic stress responses?[J]. Environmental and Experimental Botany, 2014, 108:4-13
DOI URL |
[3] | Wim V D E, Peshev D. Sugars as Antioxidants in Plants[M]. New York: Crop Improvement Under Adverse Conditions, 2013: 285-307 |
[4] | 王正鹏, 蔡文伟, 张树珍. 蔗糖: 蔗糖果糖基转移酶(1-SST)基因的克隆与植物表达载体的构建[J]. 浙江农业科学, 2008, 4(2):418-421 |
[5] | 许欢欢, 康健, 梁明祥. 植物果聚糖的代谢途径及其在植物抗逆中的功能研究进展[J]. 植物学报, 2014, 49(2):209-220 |
[6] | 杨德龙, 栗孟飞, 刘媛, 程洪波, 常磊, 柴守玺. 干旱胁迫对小麦花后不同器官果聚糖代谢和转运的影响[J]. 麦类作物学报, 2016, 36(2):190-199 |
[7] |
Dong Y, Zhang Y, Xiao Y G, Yan J, Liu J D, Wen W, Zhang Y, Jing R L, Xia X C, He Z H. Cloning of TaSST genes associated with water soluble carbohydrate content in bread wheat stems and development of a functional marker[J]. Theoretical and Applied Genetics, 2016, 129(5):1061-1070
DOI PMID |
[8] |
Vijn Ⅰ, Dijken A V, Lüscher M, Bos A, Smeekens S. Cloning of sucrose:sucrose 1-fructosyltransferase from onion and synjournal of structurally defined fructan molecules from sucrose[J]. Plant Physiology, 1998, 117(4):1507-1513
PMID |
[9] | 贺晓岚, 王建伟, 李文旭, 赵继新, 武军, 陈新宏. 华山新麦草蔗糖:蔗糖1-果糖基转移酶基因Ph-1-SST的克隆及序列分析[J]. 西北农业学报, 2018, 27(4):491-498 |
[10] | 张园, 林春, 皇秋秋, 杜加欢, 毛自朝, 刘正杰. 蔗糖:蔗糖1-果糖基转移酶基因Ao1-SST的克隆及表达分析[J]. 分子植物育种, 2019, 17(15):4915-4921 |
[11] | 高洁铭, 杨世鹏, 王丽慧, 张亚琦, 王艳萍, 孙雪梅. 菊芋果聚糖合成关键基因1-SST克隆及序列分析[J]. 分子植物育种, 2020, 18(24):8039-8046 |
[12] |
Joke D R, Kathleen V, André V L, Wim V D E. Drought induces fructan synjournal and 1-SST (sucrose: sucrose fructosyltransferase) in roots and leaves of chicory seedlings (Cichorium intybus L.)[J]. Planta, 2000, 210(5):808-814
DOI URL |
[13] |
Robert S, Robert D H, Ingrid M V D M, Hanny J C H, Argen J V T, Andries J K. High level fructan accumulation in a transgenic sugar beet[J]. Nature Biotechnology, 1998, 16(9):843-846
DOI URL |
[14] |
Gadegaard G, Didion T, Folling M, Storgaard M, Andersen C H, Nielsen K K. Improved fructan accumulation in perennial ryegrass transformed with the onion fructosyltransferase genes 1-SST and 6G-FFT[J]. Journal of Plant Physiology, 2008, 165(11):1214-1225
DOI URL |
[15] |
Akira K, Midori Y. Molecular characterization of sucrose: sucrose 1-fructosyltransferase and sucrose: Fructan 6-fructosyltransferase associated with fructan accumulation in winter wheat during cold hardening[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66(11):2297-2305
DOI URL |
[16] | 李慧娟, 尹海英, 张学成, 杨爱芳. 转蔗糖:蔗糖-1-果糖基转移酶基因提高烟草的耐旱性[J]. 山东大学学报(理学版), 2007, 42(1):89-94 |
[17] |
Martin C H G, Alan J S. The chemistry of alliums[J]. Molecules, 2018, 23(1):143-144
DOI URL |
[18] | 权宽章. 乐都紫皮大蒜覆膜栽培技术[J]. 黑龙江农业科学, 2009, 1(3):169-170 |
[19] | 周秉荣, 胡爱军, 陈国茜, 张海静, 何永清, 张成祥. 青海省农牧业气候资源综合区划及评价[J]. 资源科学, 2013, 35(1):191-198 |
[20] |
Losso J N, Nakai S. Molecular size of garlic fructooligosaccharides and fructopolysaccharides by matrix-assisted laser desorption ionization mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 1997, 45(11):4342-4346
DOI URL |
[21] |
Sun X D, Zhu S Y, Li N Y, Cheng Y, Zhao J, Qiao X G, Lu L, Liu S Q, Wang Y Z, Liu C, Li B P, Guo W, Gao S, Yang Z M, Li F, Zeng Z, Tang Q, Pan Y P, Guan M J, Zhao J, Lu X M, Meng H W, Han Z L, Gao C S, Jiang W K, Zhao X, Tian S L, Su J G, Cheng Z H, Liu T M. A chromosome-level genome assembly of garlic (Allium sativum L.) provides insights into genome evolution and allicin biosynjournal[J]. Molecular Plant, 2020, 13(9):1328-1339
DOI URL |
[22] | 边海燕, 郭春倩, 刘新雨, 王紫彤, 闫艺薇, 田洁, 王晋民. 低温胁迫对乐都紫皮大蒜生长及果聚糖代谢关键酶基因的影响[J]. 青海大学学报, 2020, 38(3):44-50 |
[23] | 杨彦会, 马晓, 张子山, 郭军, 李月楠, 梁英, 宋健民, 赵世杰. 干旱胁迫对蜡质含量不同小麦近等基因系光合特性的影响[J]. 中国农业科学, 2018, 51(22):4241-4251 |
[24] |
Sagadevan G M, Bienyameen B, Shaheen M, Shaun P, Saberi M, Clare V, Willigen, Kershini G, Alice M, Samson M. Physiological and molecular insights into drought tolerance[J]. African Journal of Biotechnology, 2002, 1(2):28-38
DOI URL |
[25] | Ahanger M A, Gul F, Ahmad P, Akram N A. Plant Metabolites and Regulation Under Environmental Stress: Chapter 3-Environmental Stresses and Metabolomics-Deciphering the Role of Stress Responsive Metabolites[M]. USA: Academic Press, 2018: 53-67 |
[26] |
Suzuki N, Rivero R M, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations[J]. New Phytologist, 2014, 203(1):32-43
DOI URL |
[27] |
Tognetti J A, Calderón P L, Pontis H G. Fructan metabolism: Reversal of cold acclimation[J]. Journal of Plant Physiology, 1989, 134(2):232-236
DOI URL |
[28] |
Tita R, Auke V, Irma V, Sief S. Fructosyltransferase mutants specify a function for the β-fructosidase motif of the sucrose-binding box in specifying the fructan type synthesized[J]. Plant Molecular Biology, 2004, 54(6):853-863
DOI URL |
[29] |
Hisano H, Kanazawa A, Kawakami A, Yoshida M, Shimamoto Y, Yamada T. Transgenic perennial ryegrass plants expressing wheat fructosyltransferase genes accumulate increased amounts of fructan and acquire increased tolerance on a cellular level to freezing[J]. Plant Science, 2004, 167(4):861-868
DOI URL |
[30] | 梁文洁. 蔗糖—果糖基转移酶SST基因转入甜菜产生果聚糖的研究[D]. 石河子:石河子大学, 2017: 31-33 |
[31] | 梁志乐, 尚珂含, 王立辉, 周瑾, 王广龙, 熊爱生. 大蒜谷胱甘肽硫转移酶基因AsGST的克隆及其对盐胁迫的响应[J]. 核农学报, 2019, 33(6):1088-1095 |
[32] |
Edgar M S G, Mercedes G L, John P D F, Juan F G L. Expression of the 1-SST and 1-FFT genes and consequent fructan accumulation in Agave tequilana and A. inaequidens is differentially induced by diverse (a)biotic-stress related elicitors[J]. Journal of Plant Physiology, 2014, 171(3/4):359-372
DOI URL |
[1] | YAO Rui, MA Xinlei, GU Pengpeng, LIN Xiaohu, GAO Hui. Genome Wide Identification and Expression Analysis of Thiolase Gene Family in Foxtail Millet(Setaria italica L.) [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 259-269. |
[2] | ZHOU Shuqian, CHEN Lu, CHEN Huiyun, LI Yongxin, CHEN Gang, LU Guoquan, YANG Huqing. Bioinformatics and Expression Analysis of Alternative Oxidase Genes in Sweetpotato [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 270-281. |
[3] | HUANG Xin, FANG Yuanpeng, YUE Ningbo, ZHANG Long, WU Dan, LI Yunzhou. Identification of Double RNA Binding Protein(DRB)Gene Family and Analysis of Defense Response to TYLCV in Tomato [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 291-301. |
[4] | ZHONG Huaiqin, KONG Lan, FAN Ronghui, FANG Nengyan, LIN Rongyan, LIN Bing. Cloning and Expression Analysis of Terpene Synthase Gene OnTPS From Oncidium Twinkle Red Fantasy [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 313-321. |
[5] | TAN Zhengwei, LI Lei, YU Yongliang, XU Lanjie, YANG Hongqi, DONG Wei, MA Xinming, LIANG Huizhen. Cloning and Expression Analysis of S-adenosylmethionine Synthetase Gene From Carthamus tinctorius L. [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 1994-2001. |
[6] | HE Li, LIU Lin, RUAN Jiming, ZHOU Ying, LIANG Ximei, LIN Changgao, WEI Lili. Cloning, Expression, Antibody Preparation of Rab1A in Grass Carp (Ctenopharygodon idella) and Its Response to Microcystin-LR [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2035-2043. |
[7] | LIU Jianting, ZENG Meijuan, WEN Wenxu, WANG Bin, CHEN Mindong, YE Xinru, ZHU Haisheng, WEN Qingfang. Cloning and Drought Response Pattern of CpNCED2, a 9-cis-epoxycarotenoid Dioxygenase Gene From Zucchini (Cucurbita pepo L.) [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1751-1760. |
[8] | LI Hui, YANG Yaling, LI Cong, LI Lihong, HAN Zhanpin, WANG Chunguo. Expression and Function of Cauliflower BobERF17, A Member of the AP2/ERF Transcription Factor Family, In Response To Abiotic Stresses [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1794-1801. |
[9] | DU Qiaoli, JIANG Junmei, CHEN Meiqing, FANG Yuanpeng, LI Xiangyang, REN Mingjian, XIE Xin. Cloning and Expression Analysis of Sorghum Transcription Factor SbWRKY71 Gene Under Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1532-1539. |
[10] | ZHOU Qian, CHEN Yun, WANG Yuzhou, WANG Jilian, KAIDIRIYE·Yusupul, ZHAO Huixin. Expression Response to Low-Temperature Stress and Codon Bias Analysis of LaBBX Gene in Lepidium apetalum [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1253-1262. |
[11] | QIN Juan, YU Fan, LIU Lu, ZHU Tingting, CHEN Wei, CAO Shifeng, YANG Zhenfeng, SHI Liyu. Cloning of Peach PpNAC19 and Its Regulation on PpCCD4 Promoter Activity [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1273-1280. |
[12] | XU Tao, LU Zhengzhao, XIA Dongjian, WAN Jing, JIANG Shuhan, SONG Jianghua. Cloning and Expression Analysis of BoFBX117 From Brassica oleracea [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1060-1066. |
[13] | DU Qiaoli, FANG Yuanpeng, JIANG Junmei, SUN Tao, REN Mingjian, XIE Xin. Identification of Sorghum Non-Expressor of Pathogenesis Related Genes 1 Gene Family and Analysis of Their Expression Under Different Stresses [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1074-1083. |
[14] | YANG Bo, LIU Haixia, NIU Tiequan, ZHANG Pengfei, LIANG Changmei, ZHAO Qifeng, WEN Pengfei. Transient Expression Analysis of VvANR Gene in Grape Leaves Mediated by TRV [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 826-836. |
[15] | LIU Jun, CHENG Zhanchao, ZHENG Huifang, CAI Miaomiao, PENG Lixin, BAI Yucong, SONG Huajian, GAO Jian. Cloning and Expression Analysis of PheDof2 Transcription Factor From Moso Bamoo (Phyllostachys edulis) [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(3): 586-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||