Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (11): 2470-2481.DOI: 10.11869/j.issn.100-8551.2021.11.2470
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
LI Ziming1(), PAN Yichen1, FAN Xiaoping1, JIANG Jianming2, WANG Zhi'an2, WANG Zhonghua1,*(
)
Received:
2020-08-13
Accepted:
2020-10-27
Online:
2021-11-10
Published:
2021-09-18
Contact:
WANG Zhonghua
李梓铭1(), 泮仪晨1, 范小平1, 江建铭2, 王志安2, 王忠华1,*(
)
通讯作者:
王忠华
作者简介:
李梓铭,男,主要从事浙贝母分子生物学研究研究。E-mail: 1273354662@qq.com
基金资助:
LI Ziming, PAN Yichen, FAN Xiaoping, JIANG Jianming, WANG Zhi'an, WANG Zhonghua. Cloning and Expression Analysis of Genes Related to Starch and Sucrose Metabolism in Fritillaria thunbergii[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2470-2481.
李梓铭, 泮仪晨, 范小平, 江建铭, 王志安, 王忠华. 浙贝母淀粉、蔗糖代谢相关基因的克隆与表达分析[J]. 核农学报, 2021, 35(11): 2470-2481.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.11.2470
基因 Gene | 上游引物(5'→3') Upstream primer (5'→3') | 基因 Gene | 上游引物(5'→3') Upstream primer (5'→3') |
---|---|---|---|
5'AGP1 | GCATCCTCAAAGACCCAAATGAACTGCC | 5'SSS | CCAATACCTTCCTTTACACTGATTTCGT |
F-AGP1 | GGAGACCGTAATCCCACAGGCG | F-SSS | CTTCTCGCAACCTCCACTAC |
R-AGP1 | AGATTCTAAGCGTGAACGGACT | R-SSS | TAGTCCAAAGCAGGGCGGTT |
3'AGP1 | CTTTGACGCTAATTTGGCTCTCACCGAT | 3'SSS | AGTGCTCGACTTATCTTCACCATTCATA |
5'AGP2 | AGAACTCCAAAACATTATGCTCCTCAAA | 5'GBSS | TCGCCTCCGTTACCGTTGTCGCATCATA |
F-AGP2 | GAAAACCCCAATTGGTTTCAGGG | F-GBSS | ATTTTAGAAGCCGACGCC |
R-AGP2 | TCCGTCTCCCTTGCTGCTTCTTG | R-GBSS | TCACCTCCAGCCATCATC |
3'AGP2 | GTCTCCGATCTTGTATTTCCGAAGGTGC | 3'GBSS | GAAATAGAAGAACAGTACCCGGACAAGG |
5'AGP3 | CTTCACCAATCCATAGTCAGATGCTCGG | 5'SBE | GAATCAGCATTTTTCCAGAGGTAGCAAC |
F-AGP3 | CTACTACAAGAGCCACGCCTGC | F-SBE | GATAAACCCGTGCTCCCC |
R-AGP3 | CTCCTACACCGATGGGAACCTT | R-SBE | CGACCCAGAATGGAAGTA |
3'AGP3 | ATTTGGAAGCGATGAAATCTGACACCAC | 3'SBE | GAGTAGTACGGAGCCCATGATTAACACA |
5'SS | ACCTAGTCACAATGAGGATTCGAGGGGT | 5'SPS | CGCCACCAATCTGCTCTCCCAACACCTT |
F-SS | AGGGTGAATGTGAATGAACTCGCT | F-SPS | GCTTGGTCGTGATTCTGATACA |
R-SS | AACATAAAACTCAACCTACAATCA | R-SPS | TGAAGACTCCCTTTGTTTTTGC |
3'SS | ATGTAAGGAAGATGCGACACACTGGGAT | 3'SPS | GTACGATCTCTATGGACTTGTGGCTTAC |
Table 1 Cloning primers of ORF region of starch and sucrose metabolism-related genes of F. thunbergii
基因 Gene | 上游引物(5'→3') Upstream primer (5'→3') | 基因 Gene | 上游引物(5'→3') Upstream primer (5'→3') |
---|---|---|---|
5'AGP1 | GCATCCTCAAAGACCCAAATGAACTGCC | 5'SSS | CCAATACCTTCCTTTACACTGATTTCGT |
F-AGP1 | GGAGACCGTAATCCCACAGGCG | F-SSS | CTTCTCGCAACCTCCACTAC |
R-AGP1 | AGATTCTAAGCGTGAACGGACT | R-SSS | TAGTCCAAAGCAGGGCGGTT |
3'AGP1 | CTTTGACGCTAATTTGGCTCTCACCGAT | 3'SSS | AGTGCTCGACTTATCTTCACCATTCATA |
5'AGP2 | AGAACTCCAAAACATTATGCTCCTCAAA | 5'GBSS | TCGCCTCCGTTACCGTTGTCGCATCATA |
F-AGP2 | GAAAACCCCAATTGGTTTCAGGG | F-GBSS | ATTTTAGAAGCCGACGCC |
R-AGP2 | TCCGTCTCCCTTGCTGCTTCTTG | R-GBSS | TCACCTCCAGCCATCATC |
3'AGP2 | GTCTCCGATCTTGTATTTCCGAAGGTGC | 3'GBSS | GAAATAGAAGAACAGTACCCGGACAAGG |
5'AGP3 | CTTCACCAATCCATAGTCAGATGCTCGG | 5'SBE | GAATCAGCATTTTTCCAGAGGTAGCAAC |
F-AGP3 | CTACTACAAGAGCCACGCCTGC | F-SBE | GATAAACCCGTGCTCCCC |
R-AGP3 | CTCCTACACCGATGGGAACCTT | R-SBE | CGACCCAGAATGGAAGTA |
3'AGP3 | ATTTGGAAGCGATGAAATCTGACACCAC | 3'SBE | GAGTAGTACGGAGCCCATGATTAACACA |
5'SS | ACCTAGTCACAATGAGGATTCGAGGGGT | 5'SPS | CGCCACCAATCTGCTCTCCCAACACCTT |
F-SS | AGGGTGAATGTGAATGAACTCGCT | F-SPS | GCTTGGTCGTGATTCTGATACA |
R-SS | AACATAAAACTCAACCTACAATCA | R-SPS | TGAAGACTCCCTTTGTTTTTGC |
3'SS | ATGTAAGGAAGATGCGACACACTGGGAT | 3'SPS | GTACGATCTCTATGGACTTGTGGCTTAC |
基因 Gene | 上游引物(5'→3') Upstream primer (5'→3') | 下游引物(5'→3') Downstream primer (5'→3') |
---|---|---|
AGP1 | CGAGGCTGCTTCCGCTCACTAA | CAAATCCATCCCCGAAACTAAT |
AGP2 | GAGAACCCCAACTGGTTTCAG | GGTATCAACCTTCATTGCCTT |
AGP3 | CTGACACCACATCTCTACGACT | ATTGTGCTCCTTTACGGCTGAT |
SSS | GCCATAATAACTGGACTAAA | TTTCCTCCTGAAGTGTCGTG |
GBSS | AAAACCCGTGAAGGGGAGAA | TTCGCCTCCGTTACCGTTGT |
SBE | GGTTTACTTGTTCTTATGGA | TCACCTCCCAGTTTCCGTAA |
SS | GCTGACTGTGCCAGAATACT | ATTTGGACAGCGAAGGACGA |
SPS | GCTACGGAGAGCCAACAGAG | GCTCCATCCACAAACTCCT |
ACT | CATAATCCAGAGCCACATA | TGCCAATCTACGAGGGTT |
Table 2 Fluorescent primers for genes related to starch and sucrose metabolism in F. thunbergii
基因 Gene | 上游引物(5'→3') Upstream primer (5'→3') | 下游引物(5'→3') Downstream primer (5'→3') |
---|---|---|
AGP1 | CGAGGCTGCTTCCGCTCACTAA | CAAATCCATCCCCGAAACTAAT |
AGP2 | GAGAACCCCAACTGGTTTCAG | GGTATCAACCTTCATTGCCTT |
AGP3 | CTGACACCACATCTCTACGACT | ATTGTGCTCCTTTACGGCTGAT |
SSS | GCCATAATAACTGGACTAAA | TTTCCTCCTGAAGTGTCGTG |
GBSS | AAAACCCGTGAAGGGGAGAA | TTCGCCTCCGTTACCGTTGT |
SBE | GGTTTACTTGTTCTTATGGA | TCACCTCCCAGTTTCCGTAA |
SS | GCTGACTGTGCCAGAATACT | ATTTGGACAGCGAAGGACGA |
SPS | GCTACGGAGAGCCAACAGAG | GCTCCATCCACAAACTCCT |
ACT | CATAATCCAGAGCCACATA | TGCCAATCTACGAGGGTT |
Fig.4 Agarose gel electrophoresis of genes related to starch and sucrose metabolism in bulbs of F. thunbergii Note: A is part 5'. B is conservative part. C is part 3'. M1 is Marker2000. M2 is Marker2000plus. M3 is Marker5000 and Ⅰ is sample.
基因名称 Gene name | 淀粉含量与基因表达量 Starch content and gene expression |
---|---|
AGP1 | 0.826** |
AGP2 | 0.930** |
AGP3 | 0.839** |
SSS | 0.582* |
GBSS | 0.561* |
SBE | 0.241 |
Table 3 Correlation analysis between starch content and the expression of related metabolic genes of F.thumbergii
基因名称 Gene name | 淀粉含量与基因表达量 Starch content and gene expression |
---|---|
AGP1 | 0.826** |
AGP2 | 0.930** |
AGP3 | 0.839** |
SSS | 0.582* |
GBSS | 0.561* |
SBE | 0.241 |
基因名称 Gene name | 蔗糖含量与基因表达量 Sucrose content and gene expression |
---|---|
SS | 0.575* |
SPS | 0.536* |
Table 4 Correlation analysis between sucrose content and related metabolic gene expression of F. thunbergii
基因名称 Gene name | 蔗糖含量与基因表达量 Sucrose content and gene expression |
---|---|
SS | 0.575* |
SPS | 0.536* |
[1] | 冯亚斌, 俞信光, 庄欣晨, 王忠华. 浙贝母HMGR基因保守区序列的克隆及生物信息学分析[J]. 核农学报, 2016, 30(12):2289-2294 |
[2] | 宋建琴. 浙贝母鳞茎发育响应钾浓度的生理机制研究[D]. 杭州:浙江中医药大学, 2019 |
[3] |
Van Harsselaar J K, Lorenz J, Senning M, Sonnewald U, Sonnewald S. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.)[J]. BMC Genomics, 2017, 18(1):37-55
DOI PMID |
[4] | 马君义, 韩小芬, 陈楠, 马蓉, 李琴, 张继. 兰州百合鳞茎冷藏保鲜过程中碳水化合物含量及淀粉酶活性的变化[J]. 食品工业科技, 2018, 39(10):73-77 |
[5] | 袁雷. 不同浓度KNO_3、GA_3、6-BA和TDZ对唐菖蒲籽球休眠的影响[D]. 雅安:四川农业大学, 2019 |
[6] | 李文彬, 卢文倩, 谢佳委, 刘艳敏, 刘润进, 郭绍霞. 丛枝菌根真菌对郁金香生长及其切花生理的影响[J]. 菌物学报, 2018, 37(4):456-465 |
[7] | 张莹婷, 杨秀莲, 何岭, 王良桂. 2种石蒜花芽分化与碳水化合物、抗氧化物酶及内源激素变化的关系[J]. 安徽农业大学学报, 2019, 46(2):342-349 |
[8] | 丁安琪. 温度对中国水仙休眠进程相关生理和基因表达的影响[D]. 福州:福建农林大学, 2016 |
[9] |
Prathap V, Kishwar A, Archana S, Chandrapal V, Veda K, Viswanathan C, Aruna T. Starch accumulation in rice grains subjected to drought during grain filling stage[J]. Plant Physiology and Biochemistry, 2019, 142(1):440-451
DOI URL |
[10] |
Schmlzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development[J]. Biotechnology Advances, 2016, 34(2):88-111
DOI URL |
[11] |
McIntyre C L, Goode M L, Cordeiro G, Bundock P, Eliott F, Henry R J, Casu R E, Bonnett G D, Aitken K S. Characterisation of alleles of the sucrose phosphate synthase gene family in sugarcane and their association with sugar-related traits[J]. Molecular Breeding, 2015, 35(3):1-14
DOI URL |
[12] | 李丽娜, 孔建强. 植物蔗糖合酶的结构、功能及应用[J]. 中国生物化学与分子生物学报, 2015, 31(9):904-913 |
[13] | 杨学东, 朱龙英, 冯岩, 张辉, 张雪莲, 朱为民. 普通番茄蔗糖积累型高糖材料的研究[C]// 中国园艺学会2019年学术年会暨成立90周年纪念大会论文摘要集, 郑州: 中国园艺学会, 2019: 162 |
[14] | 陈兰平. 甘蔗蔗糖磷酸合成酶家族基因演化和功能研究[D]. 福州:福建师范大学, 2015 |
[15] | 刘倩倩, 冯希环, 孙艳, 刘维信. 薹菜肉质根发育过程中糖积累及蔗糖代谢相关酶活性变化[J]. 植物生理学报, 2016, 52(12):1901-1908 |
[16] |
Lunn J E, Macrae E. New complexities in the synjournal of sucrose[J]. Current Opinion in Plant Biology, 2003, 6(3):208-214
DOI URL |
[17] | 夏宜平, 杨玉爱, 杨肖娥, 高晓辰, 李方. 郁金香更新鳞茎发育的碳同化物积累与内源激素变化研究[J]. 园艺学报, 2005, 32(2):278-283 |
[18] | 郭燕, 董丽, 刘春. 盆栽百合鳞茎发育与碳水化合物变化的关系[J]. 河南农业科学, 2012, 41(5):117-120 |
[19] |
Pérez L, Soto E, Villorbina G, Bassie L, Medina Ⅴ, Muñoz P, Capell T, Zhu C F, Christou P, Farré G. CRISPR/Cas9-induced monoallelic mutations in the cytosolic AGPase large subunit gene APL2 induce the ectopic expression of APL2 and the corresponding small subunit gene APS2b in rice leaves[J]. Transgenic Research, 2018, 27(5):423-439
DOI URL |
[20] |
王倩, 孙文静, 包颖. 植物颗粒结合淀粉合酶GBSS基因家族的进化[J]. 植物学报, 2017, 52(2):179-187
DOI URL |
[21] | 安飞飞, 冷青云, 李开绵, 陈松笔. 木薯华南8号及其四倍体块根淀粉代谢相关基因表达分析[J]. 南方农业学报, 2018, 49(8):1484-1489 |
[22] | Han H X, Yang C T, Zhu J H, Zhang L X, Bai Y M, Li E P, Gilbert R G. Competition between granule bound Starch Synthase and starch branching enzyme in starch biosynjournal[J]. Rice, 2019, 12(12):937-946 |
[23] | 赵轶鹏, 赵新勇. 植物体可溶性糖测定方法的优化[J]. 安徽农业科学, 2018, 46(4):184-185 |
[24] | 刘欣, 李晶, 魏玉玲, 宋春满, 陈建华, 缪恩铭, 耿永勤, 向明, 田丽梅. 超高效液相色谱测定烟叶中的糖类化合物及在筛选评价中的应用[J]. 食品与机械, 2018, 34(12):49-52 |
[25] | 冯亚斌, 施鑫磊, 俞信光, 沈晓霞, 江建铭, 王忠华. 浙贝母肌动蛋白基因的克隆及生物信息学分析[J]. 中成药, 2017, 39(1):126-130 |
[26] | 杨宁, 张莉环, 史万斌, 刘博, 王玮. 斧翅沙芥蔗糖转运蛋白基因PdSUT4的克隆与表达分析[J]. 西北师范大学学报(自然科学版), 2020, 56(2):87-93 |
[27] | 姚绍嫦, 顾晋源, 黄荣韶, 谭勇, 蓝祖栽, 欧泽清, 潘春柳. 牛大力蔗糖合酶基因CsSuSy克隆与表达特征分析[J]. 分子植物育种, 2020, 18(1):1-20 |
[28] | 蒋素华, 牛苏燕, 周一冉, 崔波, 梁芳, 袁秀云, 马杰. 白及蔗糖合成酶基因的克隆及表达分析[J]. 广西植物, 2020, 40(2):192-199 |
[29] | 潘坤, 王海燕, 卢诚, 周新成, 陈新, 王文泉. 实时荧光定量PCR检测木薯转化酶和蔗糖合酶的mRNA表达量[J]. 分子植物育种, 2016, 14(7):1788-1794 |
[30] |
Subbaiah C C, Palaniappan A, Duncan K, Rhoads D M, Huber S C, Sachs M M. Mitochondrial localization and putative signaling function of sucrose synthase in maize[J]. Journal of Biological Chemistry, 2006, 281(23):15625-15635
DOI URL |
[31] | Islam M Z, Hu X M, Jin L F, Liu Y Z, Peng S A. Genome-wide identification and expression profile analysis of citrus Sucrose Synthase genes: Investigation of possible roles in the regulation of sugar accumulation[J]. PLoS One, 2014, 9(11):1-16 |
[32] |
Liu C, Chen X, Ma P A, Zhang S K, Zeng C Y, Jiang X Y, Wang W Q. Ethylene responsive factor MeERF72 negatively regulates sucrose synthase 1 gene in assava.[J]. International Journal of Molecular Sciences, 2018, 19(5):1281-1293
DOI URL |
[33] |
Fan C F, Wang G Y, Wang Y M, Zhang R, Wang Y T, Feng S Q, Luo K M, Peng L C. Sucrose Synthase enhances hull size and grain weight by regulating cell division and starch accumulation in transgenic rice[J]. International Journal of Molecular Sciences, 2019, 20(20):4971-4984
DOI URL |
[34] | 曾德雯, 朱龙英, 冯岩, 朱为民, 张迎迎. 高等植物蔗糖磷酸合成酶(SPS)的研究进展[J]. 植物生理学报, 2020, 56(5):931-938 |
[35] | Zhang Y W, Zhou Y Z, Lu H B, Zheng D Y, Huang Y H. Cloning, expression and genetic transformation of sucrose phosphate synthase (SPS) gene in Saccharum spontaneum L[J]. Acta Biologica Cracoviensia Series Botanica, 2017, 59(2):7-15 |
[36] | 帅良, 殷菲胧, 廖玲燕, 刘云芬, 段振华, 宋慕波. 龙眼SPS基因克隆及其表达分析[J]. 南方农业学报, 2020, 51(7):1529-1536 |
[37] |
Chen S, Mohammad H, Bürnke F. Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves[J]. Plant Physiology, 2005, 139(3):1163-1174
DOI URL |
[38] |
Gnansounou E, Dauriat A, Wyman C E. Refining sweet sorghum to ethanol and sugar: Economic trade-offs in the context of North China[J]. Bioresource Technology, 2005, 96(9):985-1002
PMID |
[39] | 魏清江, 马张正, 勒思, 雷常玉, 马巧利, 辜青青. 柑橘磷酸蔗糖合酶基因CsSPS的鉴定和表达[J]. 园艺学报, 2020, 47(2):334-344 |
[40] | 钟建崑. 木薯蔗糖磷酸合成酶及相关生理特性与块根淀粉积累关系研究[D]. 南宁:广西大学, 2015 |
[41] |
Hashida Y, Hirose T, Okamura M, Hibara K Ⅰ, Aoki N. A reduction of sucrose phosphate synthase (SPS) activity affects sucrose/starch ratio in leaves but does not inhibit normal plant growth in rice[J]. Plant Science, 2016, 253(1):40-49
DOI URL |
[42] |
Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R. Over-expression of a Maize SPS gene improves yield characters of potato under field conditions[J]. Plant Production Science, 2008, 11(1):104-107
DOI URL |
[43] |
Nemati F, Ghanati F, Gavlighi H A, Sharifi M. Comparison of sucrose metabolism in wheat seedlings during drought stress and subsequent recovery[J]. Biologia Plantarum, 2018, 62(3):595-599.
DOI URL |
[44] |
Zhang W J, Wang J Q, Huang Z L, Lu M, Jing D G. Effects of low temperature at booting stage on sucrose metabolism and endogenous hormone contents in winter wheat spikelet[J]. Frontiers in Plant Science, 2019, 10(4):498-512
DOI URL |
[45] | 杨见秋. 莲藕AGPase小亚基基因的克隆及表达分析[D]. 扬州:扬州大学, 2015 |
[46] | Kleczkowski L A, Decker D. Sugar activation for production of nucleotide sugars as substrates for glycosyltransferases in plants[J]. Journal of Applied Glycoence, 2015, 62(2):28-32 |
[47] | 潘鹏屹. 水稻粉质突变体ws和d92的基因克隆及突变机理研究[D]. 南京:南京农业大学, 2016 |
[48] |
Tang X J, Peng C, Zhang J, Cai Y, You X M, Kong F, Yan H G, Wang G X, Wang L, Jin J, Chen W W, Chen G, Ma J, Wang P, Jiang L, Zhang W W, Wan J M. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm[J]. Plant Science, 2016, 249(1):70-83
DOI URL |
[49] |
Schlosser A J, Martin J M, Hannah L C, Giroux M J. The maize leaf starch mutation has diminished field growth and productivity[J]. Crop Science, 2012, 52(2):700-706
DOI URL |
[50] | 郭丽君. 葛根淀粉积累的生理及分子基础研究[D]. 南宁:广西大学, 2018 |
[51] | 张晓伟. 小麦及其近缘种淀粉合成关键酶AGPase基因的分子鉴定[D]. 雅安:四川农业大学, 2017 |
[52] | 马均, 明东风, 马文波, 许凤英. 不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究[J]. 中国农业科学, 2005, 38(2):290-296 |
[53] | 俞梅珍. 荸荠颗粒结合型淀粉合成酶基因的克隆与表达分析[D]. 扬州:扬州大学, 2017 |
[54] | 彭佶松, 赵淑娟, 吴晓俊, 刘涤, 胡之璧, 许政暟. 黄芪毛状根GBSSI基因cDNA克隆及其结构分析[J]. 植物学报, 2000, 42(9):940-945 |
[55] | 许娟, 罗兴录, 赵德征. 木薯淀粉合成相关酶基因的克隆及表达分析[J]. 生物技术通报, 2012(11):101-109 |
[56] | 闵芮涵, 孙敏译, 吴昀, 李世琦, 夏宜平. 离体百合鳞茎发育及淀粉合成酶基因LohGBSSI的克隆与表达[J]. 浙江农林大学学报, 2020, 37(2):201-208 |
[57] |
Li C, Li Q G, Dunwell J M, Zhang Y M. Divergent evolutionary pattern of starch biosynthetic pathway genes in grasses and dicots[J]. Molecular Biology and Evolution, 2012, 29(10):3227-3236
DOI URL |
[58] |
Hebelstrup K H, Nielsen M M, Carciofi M, Andrzejczak O, Shaik S S, Blennow A, Palcic M M. Waxy and non-waxy barley cultivars exhibit differences in the targeting and catalytic activity of GBSS1a[J]. Journal of Experimental Botany, 2017, 68(5):931-941
DOI PMID |
[59] |
Wang Y N, Li Y, Zhang H, Zhai H, Liu Q C, He S Z. A Soluble Starch Synthase Ⅰ Gene, IbSSI, alters the content, composition, granule size and structure of starch in transgenic sweet potato[J]. Scientific Reports, 2017, 7(1):2315-2330
DOI URL |
[60] |
Li Q F, Huang L C, Chu R, Li J, Jiang M Y, Zhang C Q, F X L, Yu H X, Gu M H, Liu Q Q. Down-regulation of SSSII-2 gene expression results in novel low-amylose rice with soft, transparent grains[J]. Journal of Agricultural and Food Chemistry, 2018, 66(37):9750-9760
DOI URL |
[61] |
Qu J Z, Xu S T, Zhang Z Q, Chen G Z, Zhong Y Y, Liu L S, Zhang R H, Xue J Q, Guo D W. Evolutionary, structural and expression analysis of core genes involved in starch synjournal[J]. Scientific Reports, 2018, 8(1):12736-12752
DOI URL |
[62] | 董建涛, 张璐, 姚馨婷, 胡少红, 武丹, 吴菁华, 张志忠. 中国水仙可溶性淀粉合成酶基因NtSSS的克隆和表达分析[J]. 分子植物育种, 2018, 16(21):6915-6920 |
[63] | 张莉, 印荔, 杨见秋, 程立宝, 李良俊. 莲藕可溶性淀粉合成酶基因LrSSS的克隆与表达特性分析[J]. 园艺学报, 2015, 42(3):496-504 |
[64] | 侯夫云, 李丰, 秦桢, 李爱贤, 董顺旭, 王庆美, 张立明. 甘薯淀粉合成相关酶基因的克隆与表达分析[J]. 分子植物育种, 2019, 17(23):7663-7668 |
[65] | 张进忠, 孙嘉曼, 李朝生, 韦莉萍, 范燕萍. 百合鳞茎发育过程中淀粉合成相关酶基因的克隆及表达分析[J]. 广西植物, 2019, 39(4):446-452 |
[1] | BIAN Nengfei, TONG Fei, GONG Jiali, SUN Donglei, SHEN Yi, WANG Xing, XING Xinghua, WANG Xiaojun. Establishment of Near Infrared Spectroscopy Model for Predicting Sucrose Content of Peanut Seed and Application in Mutants Selection [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 251-258. |
[2] | HOU Fuyun, CHEN Guiling, DONG Shunxu, XIE Beitao, QIN Zhen, LI Aixian, ZHANG Liming, WANG Qingmei. Comparative Study on Starch Composition, Physicochemical Properties and Noodle Quality of Different Sweet Potato Varieties [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 392-401. |
[3] | BAN Wenhui, WANG Xingqiang, LIU Qiangjuan, SUN Jianbo, LYU Kaiyuan, KANG Jianhong. Effects of Nitrogen Application Rate on Potato Yield, Starch Content and Related Enzyme Metabolic During Tuber Formation After High Temperature Stress [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 422-434. |
[4] | ZHANG Hong, LU Guodong, YUAN Chunchun, LANG Sirui, CHEN Ren. Correlation Between the Accumulations of 9 Steviol Glycosides and the Expressions of the Key Genes Involved in Their Biosynthesis in Stevia rebaudiana [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 75-82. |
[5] | HE Li, LIU Lin, RUAN Jiming, ZHOU Ying, LIANG Ximei, LIN Changgao, WEI Lili. Cloning, Expression, Antibody Preparation of Rab1A in Grass Carp (Ctenopharygodon idella) and Its Response to Microcystin-LR [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2035-2043. |
[6] | FENG Yalan, YIN Fei, XU Ke, JIA Xiaoyi, ZHOU Shuang, MA Chao. Role of Sucrose Metabolism and Signal Transduction in Plant Development and Stress Response [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2044-2055. |
[7] | CHAI Jichuan, LIU Lu, CHEN Jingdan, WANG Kang, CAO Shifeng, SHI Liyu, YANG Zhenfeng, CHEN Wei. Comparative Analysis of Starch Degradation Characteristics of Two Varieties of Kiwifruit After Harvest [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2065-2074. |
[8] | YANG Min, LI Xiangling, HAN Jinling, YANG Qing, WANG Jian. Nicosulfuron Stress on Active Oxygen Accumulation, Antioxidant System and Related Gene Expression in Sweet Maize Seedlings [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2182-2193. |
[9] | TIAN Jiachun, TIAN Shilong, LI Shouqiang, GE Xia, LI Mei, CHENG Jianxin. Effects of Low Oxygen and High Carbon Dioxide Storage Environment on Starch-Glucose Metabolism of Potato Tubers [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1832-1840. |
[10] | YIN Mengyao, CHEN Gong, LUO Haihua, PENG Jinjian, GAO Xin, YUAN Changkai, TANG Feiyu. Effects of External IAA Application on Sucrose Metabolism With Cotton Bolls and Within-Boll Yield Components [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1931-1940. |
[11] | ZHAO Dongxiao, SHI Xinqin, DONG Yaru, GENG Bing, SUN Jingshi, LOU Qinian, WANG Zhaohong, GUO Guang. Effects of 60Co-γ Radiation and PEG Stress on Physiological Characteristics and Related Gene Expression of Mulberry Seedlings [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1485-1494. |
[12] | DU Qiaoli, JIANG Junmei, CHEN Meiqing, FANG Yuanpeng, LI Xiangyang, REN Mingjian, XIE Xin. Cloning and Expression Analysis of Sorghum Transcription Factor SbWRKY71 Gene Under Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1532-1539. |
[13] | ZHOU Qian, CHEN Yun, WANG Yuzhou, WANG Jilian, KAIDIRIYE·Yusupul, ZHAO Huixin. Expression Response to Low-Temperature Stress and Codon Bias Analysis of LaBBX Gene in Lepidium apetalum [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1253-1262. |
[14] | SHEN Chaoru, YANG Runmei, YUE Chuan, CAO Hongli. Cloning and Expression Analysis of Three MAPKKK Genes in Postharvest Processing of Tea Leaves [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1281-1290. |
[15] | CHE Yongmei, XU Qing, YANG Decui, ZHAO Fanggui, LU Songchong, LIU Xin. The Physiological and Molecular Mechanism of Nitrogen Metabolism in Haidao 86 in Response to Alkaline Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1291-1299. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||