Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (10): 2431-2439.DOI: 10.11869/j.issn.100-8551.2021.10.2431
• Isotope Tracer Technique·Ecology and Environment·Physiology • Previous Articles
WEN Yue(), WANG Zhenhua*(
), LI Wenhao, DING Hongwei
Received:
2020-08-19
Accepted:
2020-10-27
Online:
2021-10-10
Published:
2021-08-04
Contact:
WANG Zhenhua
通讯作者:
王振华
作者简介:
温越,男,主要从事节水灌溉理论研究。E-mail: 17699534686@163.com
基金资助:
WEN Yue, WANG Zhenhua, LI Wenhao, DING Hongwei. Research on the Effects of Water and Fertilizer Coupling on the Yield and Quality of Drip Irrigation Grapes in Extremely Arid Regions[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2431-2439.
温越, 王振华, 李文昊, 丁宏伟. 极端干旱区水肥耦合对滴灌葡萄产量和品质的影响研究[J]. 核农学报, 2021, 35(10): 2431-2439.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.10.2431
土层 Soil depth /cm | 土壤类型 Soil types | 田间持水量 Field capacity /% | 土壤容重 Soil bulk density /(g·cm-3) | 有机质 Organic matter /(g·kg-1) | 碱解氮 Available N /(mg·kg-1) | 速效磷 Available P /(mg·kg-1) | 速效钾 Available K /(mg·kg-1) |
---|---|---|---|---|---|---|---|
0~20 | 砂土 | 17.50±0.03 | 1.57±0.04 | 12.63 | 125.11 | 52.20 | 220.42 |
20~40 | 壤砂土 | 18.28±0.04 | 1.58±0.02 | 11.13 | 90.35 | 40.88 | 142.64 |
40~60 | 壤砂土 | 18.16±0.02 | 1.55±0.04 | 8.62 | 76.52 | 29.89 | 156.38 |
60~80 | 砂土 | 18.06±0.04 | 1.59±0.05 | 7.99 | 67.13 | 20.73 | 197.45 |
Table 1 Basic physical and chemical properties of the tested soil
土层 Soil depth /cm | 土壤类型 Soil types | 田间持水量 Field capacity /% | 土壤容重 Soil bulk density /(g·cm-3) | 有机质 Organic matter /(g·kg-1) | 碱解氮 Available N /(mg·kg-1) | 速效磷 Available P /(mg·kg-1) | 速效钾 Available K /(mg·kg-1) |
---|---|---|---|---|---|---|---|
0~20 | 砂土 | 17.50±0.03 | 1.57±0.04 | 12.63 | 125.11 | 52.20 | 220.42 |
20~40 | 壤砂土 | 18.28±0.04 | 1.58±0.02 | 11.13 | 90.35 | 40.88 | 142.64 |
40~60 | 壤砂土 | 18.16±0.02 | 1.55±0.04 | 8.62 | 76.52 | 29.89 | 156.38 |
60~80 | 砂土 | 18.06±0.04 | 1.59±0.05 | 7.99 | 67.13 | 20.73 | 197.45 |
灌溉处理 Irrigation treatments | 各生育期土壤灌水下限Lower limit of soil moisture content of irrigation in each growth period/% | ||||
---|---|---|---|---|---|
新梢生长期 Shoot growth period | 花期 Flowering period | 浆果生长期 Berry growth period | 浆果成熟期 Berry mature period | ||
W1 | 65 | 75 | 75 | 75 | |
W2 | 75 | 65 | 75 | 75 | |
W3 | 75 | 75 | 65 | 75 | |
W4 | 75 | 75 | 75 | 65 | |
CK | 75 | 75 | 75 | 75 |
Table 2 Irrigation schemes at different growth periods
灌溉处理 Irrigation treatments | 各生育期土壤灌水下限Lower limit of soil moisture content of irrigation in each growth period/% | ||||
---|---|---|---|---|---|
新梢生长期 Shoot growth period | 花期 Flowering period | 浆果生长期 Berry growth period | 浆果成熟期 Berry mature period | ||
W1 | 65 | 75 | 75 | 75 | |
W2 | 75 | 65 | 75 | 75 | |
W3 | 75 | 75 | 65 | 75 | |
W4 | 75 | 75 | 75 | 65 | |
CK | 75 | 75 | 75 | 75 |
施肥处理 Fertilizer treatments | 肥料种类 Fertilizer types | 萌芽期 Germination period | 新梢生长期 Shoot growth period | 花期 Flowering period | 浆果生长期 Berry growth period | 浆果成熟期 Berry mature period | 施肥总量 Total fertilization amount |
---|---|---|---|---|---|---|---|
F1 | N | 82.5 | 82.5 | 55.0 | 27.5 | 27.5 | 275.0 |
P2O5 | 27.5 | 55.0 | 55.0 | 82.5 | 55.0 | 275.0 | |
K2O | 27.5 | 27.5 | 27.5 | 110.0 | 82.5 | 275.0 | |
F2 | N | 70.7 | 70.7 | 47.1 | 23.6 | 23.6 | 235.7 |
P2O5 | 23.6 | 47.1 | 47.1 | 70.7 | 47.1 | 235.7 | |
K2O | 35.4 | 35.4 | 35.4 | 141.4 | 106.1 | 353.6 | |
F3 | N | 99.0 | 99.0 | 66.0 | 33.0 | 33.0 | 330.0 |
P2O5 | 16.5 | 33.0 | 33.0 | 49.5 | 33.0 | 165.0 | |
K2O | 33.0 | 33.0 | 33.0 | 132.0 | 99.0 | 330.0 |
Table 3 Fertilizer application rates at different growth periods/(kg·hm-2)
施肥处理 Fertilizer treatments | 肥料种类 Fertilizer types | 萌芽期 Germination period | 新梢生长期 Shoot growth period | 花期 Flowering period | 浆果生长期 Berry growth period | 浆果成熟期 Berry mature period | 施肥总量 Total fertilization amount |
---|---|---|---|---|---|---|---|
F1 | N | 82.5 | 82.5 | 55.0 | 27.5 | 27.5 | 275.0 |
P2O5 | 27.5 | 55.0 | 55.0 | 82.5 | 55.0 | 275.0 | |
K2O | 27.5 | 27.5 | 27.5 | 110.0 | 82.5 | 275.0 | |
F2 | N | 70.7 | 70.7 | 47.1 | 23.6 | 23.6 | 235.7 |
P2O5 | 23.6 | 47.1 | 47.1 | 70.7 | 47.1 | 235.7 | |
K2O | 35.4 | 35.4 | 35.4 | 141.4 | 106.1 | 353.6 | |
F3 | N | 99.0 | 99.0 | 66.0 | 33.0 | 33.0 | 330.0 |
P2O5 | 16.5 | 33.0 | 33.0 | 49.5 | 33.0 | 165.0 | |
K2O | 33.0 | 33.0 | 33.0 | 132.0 | 99.0 | 330.0 |
Fig.2 Effects of water and fertilizer supply on the relative water content of leaves of grapes at various growth stages under drip irrigation Note: Different lowercase letters indicate significant difference between treatments at 0.05 level. The same as following. A: Shoot growth period. B: Flowering period. C: Berry growth period. D: Berry mature period.
处理 Treatments | 产量 Yield /(kg·hm-2) | 还原性糖含量 Reducing sugar content/% | 可溶性固形物含量 Soluble solids content/% | 可滴定酸含量 Titratable acid content/% | 维生素C含量 Vitamin C content /(mg·100g-1) | |
---|---|---|---|---|---|---|
W1F1 | 25 317±287d | 20.70±0.18de | 21.50±0.28ef | 0.484±0.015ef | 7.96±0.04f | |
W1F2 | 26 676±376c | 21.50±0.17bc | 22.80±0.23b | 0.455±0.021f | 8.39±0.01b | |
W1F3 | 24 866±204d | 20.20±0.30ef | 22.50±0.18bc | 0.492±0.010ef | 8.13±0.08de | |
W2F1 | 22 162±184f | 18.80±0.12h | 18.80±0.14hi | 0.535±0.014cde | 7.63±0.07h | |
W2F2 | 23 828±393e | 20.60±0.24de | 21.00±0.11fg | 0.499±0.005def | 7.94±0.02fg | |
W2F3 | 22 725±287f | 18.20±0.21i | 19.40±0.13h | 0.580±0.023bc | 7.82±0.03g | |
W3F1 | 18 656±249h | 17.00±0.23j | 18.60±0.14i | 0.621±0.023ab | 7.11±0.11j | |
W3F2 | 19 320±191g | 19.40±0.51g | 20.50±0.21g | 0.613±0.015ab | 7.41±0.06i | |
W3F3 | 18 400±346h | 16.40±0.30k | 19.20±0.21hi | 0.665±0.018a | 7.20±0.07j | |
W4F1 | 27 449±151ab | 20.00±0.35b | 21.80±0.34de | 0.452±0.011f | 8.01±0.06ef | |
W4F2 | 27 877±314ab | 23.00±0.21a | 23.50±0.33a | 0.436±0.008f | 8.64±0.07a | |
W4F3 | 27 315±403b | 21.20±0.27cd | 22.40±0.06bcd | 0.474±0.029ef | 8.29±0.02bc | |
CKF1 | 27 828±197ab | 20.60±0.28de | 20.70±0.42g | 0.581±0.011bc | 7.88±0.06fg | |
CKF2 | 28 003±144a | 21.00±0.14cd | 21.90±0.57cde | 0.567±0.017bcd | 8.23±0.06cd | |
CKF3 | 27 624±322ab | 19.90±0.28fg | 21.60±0.34ef | 0.604±0.007abc | 8.00±0.08ef | |
W1 | 25 620±942b | 20.65±0.70ab | 22.27±0.68a | 0.477±0.021c | 8.16±0.22ab | |
W2 | 22 905±847c | 19.34±1.27bc | 19.73±1.14b | 0.538±0.038b | 7.80±0.16b | |
W3 | 18 792±475d | 17.84±1.68c | 19.43±0.97b | 0.633±0.032a | 7.24±0.15c | |
W4 | 27 547±294a | 22.26±0.88a | 22.57±0.86a | 0.454±0.021c | 8.31±0.32a | |
CK | 27 818±190a | 20.60±0.44ab | 21.40±0.62a | 0.584±0.022b | 8.04±0.18ab | |
F1 | 24 282±3 867a | 19.93±1.96a | 20.28±1.50a | 0.534±0.074a | 7.72±0.37a | |
F2 | 25 140±3 662a | 21.19±1.24a | 21.94±1.24a | 0.514±0.068a | 8.12±0.47a | |
F3 | 24 186±3 798a | 19.29±1.85a | 21.02±1.61a | 0.563±0.082a | 7.89±0.42a | |
双因素方差分析 Two-way analysis of variance | W | ** | ** | ** | ** | ** |
F | ** | * | * | |||
W×F | * | ** | ** | ** | ** |
Table 4 Effects of water and fertilizer supply on grape yield and quality of drip irrigation
处理 Treatments | 产量 Yield /(kg·hm-2) | 还原性糖含量 Reducing sugar content/% | 可溶性固形物含量 Soluble solids content/% | 可滴定酸含量 Titratable acid content/% | 维生素C含量 Vitamin C content /(mg·100g-1) | |
---|---|---|---|---|---|---|
W1F1 | 25 317±287d | 20.70±0.18de | 21.50±0.28ef | 0.484±0.015ef | 7.96±0.04f | |
W1F2 | 26 676±376c | 21.50±0.17bc | 22.80±0.23b | 0.455±0.021f | 8.39±0.01b | |
W1F3 | 24 866±204d | 20.20±0.30ef | 22.50±0.18bc | 0.492±0.010ef | 8.13±0.08de | |
W2F1 | 22 162±184f | 18.80±0.12h | 18.80±0.14hi | 0.535±0.014cde | 7.63±0.07h | |
W2F2 | 23 828±393e | 20.60±0.24de | 21.00±0.11fg | 0.499±0.005def | 7.94±0.02fg | |
W2F3 | 22 725±287f | 18.20±0.21i | 19.40±0.13h | 0.580±0.023bc | 7.82±0.03g | |
W3F1 | 18 656±249h | 17.00±0.23j | 18.60±0.14i | 0.621±0.023ab | 7.11±0.11j | |
W3F2 | 19 320±191g | 19.40±0.51g | 20.50±0.21g | 0.613±0.015ab | 7.41±0.06i | |
W3F3 | 18 400±346h | 16.40±0.30k | 19.20±0.21hi | 0.665±0.018a | 7.20±0.07j | |
W4F1 | 27 449±151ab | 20.00±0.35b | 21.80±0.34de | 0.452±0.011f | 8.01±0.06ef | |
W4F2 | 27 877±314ab | 23.00±0.21a | 23.50±0.33a | 0.436±0.008f | 8.64±0.07a | |
W4F3 | 27 315±403b | 21.20±0.27cd | 22.40±0.06bcd | 0.474±0.029ef | 8.29±0.02bc | |
CKF1 | 27 828±197ab | 20.60±0.28de | 20.70±0.42g | 0.581±0.011bc | 7.88±0.06fg | |
CKF2 | 28 003±144a | 21.00±0.14cd | 21.90±0.57cde | 0.567±0.017bcd | 8.23±0.06cd | |
CKF3 | 27 624±322ab | 19.90±0.28fg | 21.60±0.34ef | 0.604±0.007abc | 8.00±0.08ef | |
W1 | 25 620±942b | 20.65±0.70ab | 22.27±0.68a | 0.477±0.021c | 8.16±0.22ab | |
W2 | 22 905±847c | 19.34±1.27bc | 19.73±1.14b | 0.538±0.038b | 7.80±0.16b | |
W3 | 18 792±475d | 17.84±1.68c | 19.43±0.97b | 0.633±0.032a | 7.24±0.15c | |
W4 | 27 547±294a | 22.26±0.88a | 22.57±0.86a | 0.454±0.021c | 8.31±0.32a | |
CK | 27 818±190a | 20.60±0.44ab | 21.40±0.62a | 0.584±0.022b | 8.04±0.18ab | |
F1 | 24 282±3 867a | 19.93±1.96a | 20.28±1.50a | 0.534±0.074a | 7.72±0.37a | |
F2 | 25 140±3 662a | 21.19±1.24a | 21.94±1.24a | 0.514±0.068a | 8.12±0.47a | |
F3 | 24 186±3 798a | 19.29±1.85a | 21.02±1.61a | 0.563±0.082a | 7.89±0.42a | |
双因素方差分析 Two-way analysis of variance | W | ** | ** | ** | ** | ** |
F | ** | * | * | |||
W×F | * | ** | ** | ** | ** |
指标 Indexes | 叶片相对含水率 Leaf relative water content | 产量 Yield | 还原性糖含量 Reducing sugar content | 可溶性固 形物含量 Soluble solids content | 可滴定酸含量 Titratable acid content | 维生素C含量 Vitamin C content |
---|---|---|---|---|---|---|
叶片相对含水率Leaf relative water content | 1 | |||||
产量Yield | 0.807** | 1 | ||||
还原性糖含量Reducing sugar content | 0.819** | 0.858** | 1 | |||
可溶性固形物含量Soluble solids content | 0.842** | 0.788** | 0.888** | 1 | ||
可滴定酸含量Titratable acid content | -0.615* | -0.635* | -0.834** | -0.736** | 1 | |
维生素C含量 Vitamin C content | 0.819** | 0.885** | 0.895** | 0.902** | -0.797** | 1 |
平均关联度Average relevance | 0.534 | 0.541 | 0.525 | 0.537 | -0.477 | 0.540 |
Table 5 Correlation analysis of various indexes of drip irrigation grape under water and fertilizer supply
指标 Indexes | 叶片相对含水率 Leaf relative water content | 产量 Yield | 还原性糖含量 Reducing sugar content | 可溶性固 形物含量 Soluble solids content | 可滴定酸含量 Titratable acid content | 维生素C含量 Vitamin C content |
---|---|---|---|---|---|---|
叶片相对含水率Leaf relative water content | 1 | |||||
产量Yield | 0.807** | 1 | ||||
还原性糖含量Reducing sugar content | 0.819** | 0.858** | 1 | |||
可溶性固形物含量Soluble solids content | 0.842** | 0.788** | 0.888** | 1 | ||
可滴定酸含量Titratable acid content | -0.615* | -0.635* | -0.834** | -0.736** | 1 | |
维生素C含量 Vitamin C content | 0.819** | 0.885** | 0.895** | 0.902** | -0.797** | 1 |
平均关联度Average relevance | 0.534 | 0.541 | 0.525 | 0.537 | -0.477 | 0.540 |
处理 Treatments | μ(X1) | μ(X2) | μ(X3) | μ(X4) | μ(X5) | μ(X6) | Di | 排名 Ranking |
---|---|---|---|---|---|---|---|---|
W1F1 | 0.721 | 0.720 | 0.652 | 0.592 | 0.790 | 0.556 | 0.672 | 6 |
W1F2 | 1.000 | 0.862 | 0.773 | 0.857 | 0.917 | 0.837 | 0.874 | 2 |
W1F3 | 0.547 | 0.673 | 0.576 | 0.796 | 0.755 | 0.667 | 0.669 | 7 |
W2F1 | 0.151 | 0.392 | 0.364 | 0.041 | 0.568 | 0.340 | 0.309 | 11 |
W2F2 | 0.358 | 0.565 | 0.636 | 0.490 | 0.725 | 0.542 | 0.553 | 10 |
W2F3 | 0.117 | 0.450 | 0.273 | 0.163 | 0.371 | 0.464 | 0.306 | 12 |
W3F1 | 0.084 | 0.027 | 0.091 | 0.000 | 0.192 | 0.000 | 0.066 | 14 |
W3F2 | 0.246 | 0.096 | 0.455 | 0.388 | 0.227 | 0.196 | 0.268 | 13 |
W3F3 | 0.000 | 0.000 | 0.000 | 0.122 | 0.000 | 0.059 | 0.030 | 15 |
W4F1 | 0.525 | 0.942 | 0.848 | 0.653 | 0.930 | 0.588 | 0.748 | 3 |
W4F2 | 0.771 | 0.987 | 1.000 | 1.000 | 1.000 | 1.000 | 0.960 | 1 |
W4F3 | 0.397 | 0.928 | 0.727 | 0.776 | 0.834 | 0.771 | 0.739 | 4 |
CKF1 | 0.559 | 0.982 | 0.636 | 0.429 | 0.367 | 0.503 | 0.579 | 9 |
CKF2 | 0.883 | 1.000 | 0.697 | 0.673 | 0.428 | 0.732 | 0.736 | 5 |
CKF3 | 0.553 | 0.961 | 0.530 | 0.612 | 0.266 | 0.582 | 0.584 | 8 |
Table 6 Membership function value of each index and comprehensive evaluations for different water and fertilizer treatments
处理 Treatments | μ(X1) | μ(X2) | μ(X3) | μ(X4) | μ(X5) | μ(X6) | Di | 排名 Ranking |
---|---|---|---|---|---|---|---|---|
W1F1 | 0.721 | 0.720 | 0.652 | 0.592 | 0.790 | 0.556 | 0.672 | 6 |
W1F2 | 1.000 | 0.862 | 0.773 | 0.857 | 0.917 | 0.837 | 0.874 | 2 |
W1F3 | 0.547 | 0.673 | 0.576 | 0.796 | 0.755 | 0.667 | 0.669 | 7 |
W2F1 | 0.151 | 0.392 | 0.364 | 0.041 | 0.568 | 0.340 | 0.309 | 11 |
W2F2 | 0.358 | 0.565 | 0.636 | 0.490 | 0.725 | 0.542 | 0.553 | 10 |
W2F3 | 0.117 | 0.450 | 0.273 | 0.163 | 0.371 | 0.464 | 0.306 | 12 |
W3F1 | 0.084 | 0.027 | 0.091 | 0.000 | 0.192 | 0.000 | 0.066 | 14 |
W3F2 | 0.246 | 0.096 | 0.455 | 0.388 | 0.227 | 0.196 | 0.268 | 13 |
W3F3 | 0.000 | 0.000 | 0.000 | 0.122 | 0.000 | 0.059 | 0.030 | 15 |
W4F1 | 0.525 | 0.942 | 0.848 | 0.653 | 0.930 | 0.588 | 0.748 | 3 |
W4F2 | 0.771 | 0.987 | 1.000 | 1.000 | 1.000 | 1.000 | 0.960 | 1 |
W4F3 | 0.397 | 0.928 | 0.727 | 0.776 | 0.834 | 0.771 | 0.739 | 4 |
CKF1 | 0.559 | 0.982 | 0.636 | 0.429 | 0.367 | 0.503 | 0.579 | 9 |
CKF2 | 0.883 | 1.000 | 0.697 | 0.673 | 0.428 | 0.732 | 0.736 | 5 |
CKF3 | 0.553 | 0.961 | 0.530 | 0.612 | 0.266 | 0.582 | 0.584 | 8 |
[1] | Mitra S, Irshad M, Debnath B, Lu X C, Li M, Dash C K, Rizwan H M, Qiu Z P, Qiu D L. Effect of vineyard soil variability on chlorophyll fluorescence, yield and quality of table grape as influenced by soil moisture, grown under double cropping system in protected condition[J]. PeerJ, 2018, 6:1-25 |
[2] | 白云岗. 极端干旱区成龄葡萄需水规律及微灌节水技术研究[D]. 乌鲁木齐: 新疆农业大学, 2011 |
[3] | 杨慧慧. 吐哈盆地滴灌葡萄耗水规律及灌溉制度研究[D]. 石河子: 石河子大学, 2011 |
[4] |
Wang R, Yan P K, Sun Q, Su B F, Zhang J X. Effects of regulated deficit irrigation on the growth and berry composition of Cabernet Sauvignon in Ningxia[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(6):102-109
DOI URL |
[5] |
Zhang H, Han M, Comas L H, DeJonge K C, Gleason S M, Trout T J, Ma L. Response of maize yield components to growth stage-based deficit irrigation[J]. Agronomy Journal, 2019, 111(6):3244-3252
DOI URL |
[6] |
Stagakis S, Gonzalez-Dugo V, Cid P, Guillen-Climent M L, Zarco-Tejada P J. Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2012, 71:47-61
DOI URL |
[7] |
Da Silva J R, Rodrigues W P, Ferreira L S, Bernado W D P, Paixao J S, Patterson A E, Ruas K F, Viana L H, de Sousa E F, Bressan-Smith R E, Poni S, Griffin K L, Campostrini E. Deficit irrigation and transparent plastic covers can save water and improve grapevine cultivation in the tropics[J]. Agricultural Water Management, 2018, 202:66-80
DOI URL |
[8] |
Ju Y L, Yue X F, Zhao X F, Zhao H, Fang Y L. Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress[J]. Plant Physiology and Biochemistry, 2018, 130:1-10
DOI URL |
[9] | Yang B H, Yao H, Zhang J X, Li Y, Ju Y L, Zhao X F, Sun X Y, Fang Y L. Effect of regulated deficit irrigation on the content of soluble sugars, organic acids and endogenous hormones in Cabernet Sauvignon in the Ningxia region of China[J]. Food Chemistry, 2020, 312:1-13 |
[10] |
Janjanin D, Karoglan M, Custic M H, Bubola M, Osrecak M, Palcic Ⅰ. Response of ‘Italian Riesling’ leaf nitrogen status and fruit composition (Vitis vinifera L.) to foliar nitrogen fertilization[J]. Hortscience, 2016, 51(3):262-267
DOI URL |
[11] |
Zhang M, Liang Y C, Chu G X. Applying silicate fertilizer increases both yield and quality of table grape (Vitis vinifera L.) grown on calcareous grey desert soil[J]. Scientia Horticulturae, 2017, 225:757-763
DOI URL |
[12] |
Yuan F, Schreiner R P, Osborne J, Qian M C. Effects of soil NPK supply on pinot noir wine phenolics and aroma composition[J]. American Journal of Enology and Viticulture, 2018, 69(4):371-385
DOI URL |
[13] |
Zhao F Y, Jiang Y, He X F, Liu H F, Yu K. Increasing organic fertilizer and decreasing drip chemical fertilizer for two consecutive years improved the fruit quality of ‘Summer Black’ grapes in arid areas[J]. Hortscience, 2020, 55(2):196-203
DOI URL |
[14] |
Fentabil M M, Nichol C F, Neilsen G H, Hannam K D, Neilsen D, Forge T A, Jones M D. Effect of micro-irrigation type, N-source and mulching on nitrous oxide emissions in a semi-arid climate: An assessment across two years in a Merlot grape vineyard[J]. Agricultural Water Management, 2016, 171:49-62
DOI URL |
[15] | 侯裕生, 王振华, 李文昊, 窦允清, 张继峯, 温越. 水肥耦合对极端干旱区滴灌葡萄耗水规律及作物系数影响[J]. 水土保持学报, 2019, 33(2):279-286 |
[16] | 侯裕生. 水肥耦合对吐哈盆地滴灌葡萄生理生长及产量品质影响效应研究[D]. 石河子: 石河子大学, 2019 |
[17] | 张娟利, 杨六生, 毛自娟, 李小梅, 曹高钦, 张超越. 烤烟叶片形状因素与叶片水分关系研究[J]. 安徽农业科学, 2016, 44(22):37-39 |
[18] | 张伟莉, 张丽光, 杨慧杰, 王吉祥, 郭平毅, 原向阳. 阔世玛对谷子幼苗叶片光合特性及可溶性物质含量的影响[J]. 核农学报, 2020, 34(6):1294-1301 |
[19] | 许冰, 任开磊, 吴疆翀, 郑益兴, 张燕平. 辣木幼林对氮、磷、钾肥效响应及叶片的生理反应[J]. 林业科学研究, 2016, 29(3):418-423 |
[20] | 梁贝贝, 王庆江, 段鹏伟, 刘同才, 刘宝轻, 程福厚. 调亏灌溉对黄冠梨叶片含水量及叶绿素含量的影响[J]. 北方园艺, 2018(14):53-57 |
[21] | 孙业民, 张俊莲, 李真, 李自龙, 李朝周. 氯化钾对干旱胁迫下马铃薯幼苗抗旱性的影响及其机制研究[J]. 干旱地区农业研究, 2014, 32(3):29-34 |
[22] | 窦允清, 王振华, 侯裕生, 张继峯, 李文昊. 模糊数学综合评判分析北疆加工番茄水氮耦合效应[J]. 核农学报, 2020, 34(9):2059-2070 |
[23] | 张喜军, 魏廷邦, 樊志龙, 柴强. 绿洲灌区水氮减施密植玉米的光合源动态和产量表现[J]. 核农学报, 2020, 34(6):1302-1310 |
[24] | 石培君, 刘洪光, 何新林, 陆华天, 叶建威. 水肥耦合对滴灌矮化密植大枣生理变化及产量影响[J]. 核农学报, 2018, 32(1):177-187 |
[25] |
Edwards E J, Clingeleffer P R. Interseasonal effects of regulated deficit irrigation on growth, yield, water use, berry composition and wine attributes of Cabernet Sauvignon grapevines[J]. Australian Journal of Grape and Wine Research, 2013, 19(2):261-276
DOI URL |
[26] | 牛最荣, 赵霞, 张芮, 王旺田, 温文. 水分胁迫对日光温室葡萄叶片生理变化及果实发育的影响[J]. 中国生态农业学报(中英文), 2020, 28(2):265-271 |
[27] | 林蝉蝉, 何舟阳, 单文龙, 刘旭, 杨晨露, 王华, 李华. 基于主成分与聚类分析综合评价杨凌地区红色鲜食葡萄果实品质[J]. 果树学报, 2020, 37(4):520-532 |
[28] | 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10):1591-1604 |
[29] | 仝倩, 施明, 贺建勋, 徐美隆. 5种葡萄砧木耐旱性评价及鉴定指标的筛选[J]. 核农学报, 2018, 32(9):1814-1820 |
[1] | SHI Yangqi, HUANG Xirui, RU Weidong, ZHANY Yu, CHAI Lihong, QIAN Qiongqiu, BAO Jinsong. Difference Analysis of the Physicochemical Properties of Wholemeal Flour From 14 Potato Varieties [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1593-1600. |
[2] | ZHOU Hong, ZHANG Jie, ZHANG Wengang, DU Yan, DANG Bin, YANG Xijuan, HAO Jing. Analysis and Evaluation of the Nutritional Quality and Active Components of Qinghai Black Highland Barley [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1609-1618. |
[3] | ZHOU Qian, CHEN Yun, WANG Yuzhou, WANG Jilian, KAIDIRIYE·Yusupul, ZHAO Huixin. Expression Response to Low-Temperature Stress and Codon Bias Analysis of LaBBX Gene in Lepidium apetalum [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1253-1262. |
[4] | SUN Donglei, BIAN Nengfei, WANG Xing, XING Xinghua, SHEN Yi, XU Zejun, QI Yujun, WANG Xiaojun. Comprehensive Evaluation of Cold Tolerance and Germplasm Screening of High Oleic Acid Peanut at Germination Stage [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1263-1272. |
[5] | HUANG Kaimei, ZOU Yijing, SHI Yangqi, YING Yining, YAN Shaobing, BAO Jinsong. Analyses of Genetic Diversity by SSR Molecular Markers and Agronomic Traits Diversity in Squash and Pumpkin [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2746-2755. |
[6] | ZHANG Hongyan, FANG Rong, CHEN Xuejun, ZHOU Kunhua, YUAN Xinjie, LEI Gang, HUANG Yueqin. Identification of Phenotypic Traits and Verticillium wilt Resistance of Eggplant Germplasms [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1645-1654. |
[7] | LI Hongyu, LI Yi, SI Yang, DU Chunying, ZHOU Xuesong, LIU Menghong, NING Hongyu, YE Piaopiao. Principal Component Analysis and Comprehensive Evaluation of Saline-Alkaline Tolerance Related Traits of Northern Japonica Rice [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1862-1871. |
[8] | LI Junhui, WANG Kai, YANG Zhenping, GAO Zhiqiang. Study on Yield, Quality, Soil Fertility and Annual Economic Benefits of Succeeding Winter-wheat After Feed-rape During Summer Fallow Period [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 610-620. |
[9] | ZOU Kaixi, YANG Yan, TIAN Libo, SHANG Sang, ZENG Liping, GUO Xuesong, LIU Ziji, ZHU Guopeng. Establishment of Evaluation System for Antioxidant Index of Heat Tolerance of Green Stalks of Non-heading Chinese Cabbage [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 669-679. |
[10] | LI Xinxin, LIU Hongguang, LIN En. Analysis of Nitrogen Utilization of Drip Irrigation Grapes in Arid Area Based on 15N Tracer Technology [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2551-2560. |
[11] | GAO Chunhua, ZHU Jinying, ZHANG Huawen, TIAN Yixin, GAO Fengju. Comprehensive Identification and Evaluation of 38 Grain Sorghum Cultivars for Tolerance During Germination [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(9): 1841-1855. |
[12] | ZHANG Xueting, YANG Wenxiong, LIU Na, YANG Changgang, WANG Shihong, WANG Xinyong. Comprehensive Evaluation and Screening of Drought Resistant Maize Varieties in Western Gansu [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1281-1290. |
[13] | FU Hongfei, LYU Xiaohan, CHEN Jianying, LI Guojing. Genetic Diversity Analysis of Capsicum Germplasm Based on Phenotypic Traits With SSR Markers [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1309-1319. |
[14] | LIU Hui, ZHANG Liming, ZHOU Qingming, LI Juan, XIANG Deming. Effects of Continuous Application of Biochar Under Flue-cured Tobacco Continuous Cropping on Black Shank, Dry Matter and Yield and Quality of Flue-cured Tobacco [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1435-1441. |
[15] | REN Mao, ZHANG Wenying. Evaluation of Heat Tolerance and Screening the Index for the Assessment of Heat Tolerance in Upland Cotton [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(4): 788-794. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||