Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (9): 2194-2203.DOI: 10.11869/j.issn.100-8551.2021.09.2194
• Isotope Tracer Technique·Ecology and Environment·Physiology • Previous Articles
WEN Hongwei1,2(), YANG Bin1,2,*(
), WANG Dongsheng3,*(
)
Received:
2020-07-20
Accepted:
2020-10-27
Online:
2021-09-10
Published:
2021-07-22
Contact:
YANG Bin,WANG Dongsheng
通讯作者:
杨斌,王东胜
作者简介:
温宏伟,男,助理研究员,主要从事小麦抗旱机理研究。E-mail: sxnkywhw@163.com
基金资助:
WEN Hongwei, YANG Bin, WANG Dongsheng. Research Progress on Promoting Growth and Drought Resistance of Wheat by Plant Growth Promoting Rhizobacteria[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2194-2203.
温宏伟, 杨斌, 王东胜. 植物根际促生菌促进小麦生长及提高其抗旱性的研究进展[J]. 核农学报, 2021, 35(9): 2194-2203.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.09.2194
类别 Classification | 植物根际促 生菌PGPR | 作用机制 Mechanisms | 作用效果 Effect | 参考文献 |
---|---|---|---|---|
References | ||||
细菌 Bacteria | 芽孢杆菌 Bacillus | 固氮、溶磷,合成IAA,钾增溶,锌增溶,诱导植物抗性 | 增加氮、磷、钾、锌吸收 | [ |
假单胞菌 Pseudomonas | 固氮、溶磷,合成IAA,产抗生素、ACC脱氨酶 | 增加氮、磷、钾、吸收,提高小麦籽粒产量和生物量 | [ | |
巨大芽孢杆菌 Bacillus megaterium sp. | 固氮,产IAA、CTK和铁载体,促进小麦氮、磷、铜、锌、锰和铁元素的吸收 | 单株接种株高增加8%~18%,籽粒产量增加7.6%~14.2%,生物量增加6.8%~13.6%;显著提高籽粒和茎秆中氮、磷、铁、铜、锌、锰含量 | [ | |
石竹伯克霍尔德氏菌 Burkholderia caryophylli | 产ACC脱氨酶,钾增溶 | 显著增加了根长、根重、分蘖数、千粒重、单株产量与生物量 | [ | |
巴西固氮螺菌 Azospirillum brasilense | 固氮,促进根系生长,诱导植物抗性 | 改善根系生长,提高植物对环境胁迫的适应能力;小麦单株产量、穗粒数和千粒重分别提高了36%、11%和17% | [ | |
变形杆菌 Proteobacteria | 固氮、合成IAA和ACC脱氨酶;促进无机磷溶解和铁载体生成,拮抗病原菌,产胞外多糖 | 促进种子萌发和根系生长;对镰刀菌(Fusarium oxysporum)等病原菌产生拮抗作用 | [ | |
真菌 Fungi | 丛枝菌根真菌 Arbuscular Mycorrhizal | 增加根系吸收范围,促进锌、硒吸收,促进土壤团聚体形成 | 显著提高硒酸盐和亚硒酸盐的吸收;籽粒锌含量是未接种处理的1.13~2.76倍 | [ |
炭疽菌属真菌 Colletotrichum DZJ07 | 诱导PPO、POD和PAL防御酶活性的提高 | 接菌后苗期小麦纹枯病的发病率显著低于对照 | [ | |
链格孢霉属真菌 Alternaria alternate LQ1230 | 合成IAA,降低活性氧和MDA含量,诱导植物抗性 | 小麦幼苗根长比对照显著增加2.04倍,增强抗旱能力 | [ | |
放线菌 Actinomycetes | 天蓝色链霉菌 Streptomyces coelicolor DE07 | 合成IAA,诱导植株抗性 | 促进小麦植株的地上部和根生长,提高分蘖数、穗粒数、生物量及产量 | [ |
易变链霉菌 Streptomyces mutabilis IA1 | 合成IAA、GA,拮抗病原真菌 | 促进小麦幼苗生长,保护小麦幼苗免受镰刀菌的侵染 | [ |
Table 1 Effect and mechanism of partial PGPR on wheat growth
类别 Classification | 植物根际促 生菌PGPR | 作用机制 Mechanisms | 作用效果 Effect | 参考文献 |
---|---|---|---|---|
References | ||||
细菌 Bacteria | 芽孢杆菌 Bacillus | 固氮、溶磷,合成IAA,钾增溶,锌增溶,诱导植物抗性 | 增加氮、磷、钾、锌吸收 | [ |
假单胞菌 Pseudomonas | 固氮、溶磷,合成IAA,产抗生素、ACC脱氨酶 | 增加氮、磷、钾、吸收,提高小麦籽粒产量和生物量 | [ | |
巨大芽孢杆菌 Bacillus megaterium sp. | 固氮,产IAA、CTK和铁载体,促进小麦氮、磷、铜、锌、锰和铁元素的吸收 | 单株接种株高增加8%~18%,籽粒产量增加7.6%~14.2%,生物量增加6.8%~13.6%;显著提高籽粒和茎秆中氮、磷、铁、铜、锌、锰含量 | [ | |
石竹伯克霍尔德氏菌 Burkholderia caryophylli | 产ACC脱氨酶,钾增溶 | 显著增加了根长、根重、分蘖数、千粒重、单株产量与生物量 | [ | |
巴西固氮螺菌 Azospirillum brasilense | 固氮,促进根系生长,诱导植物抗性 | 改善根系生长,提高植物对环境胁迫的适应能力;小麦单株产量、穗粒数和千粒重分别提高了36%、11%和17% | [ | |
变形杆菌 Proteobacteria | 固氮、合成IAA和ACC脱氨酶;促进无机磷溶解和铁载体生成,拮抗病原菌,产胞外多糖 | 促进种子萌发和根系生长;对镰刀菌(Fusarium oxysporum)等病原菌产生拮抗作用 | [ | |
真菌 Fungi | 丛枝菌根真菌 Arbuscular Mycorrhizal | 增加根系吸收范围,促进锌、硒吸收,促进土壤团聚体形成 | 显著提高硒酸盐和亚硒酸盐的吸收;籽粒锌含量是未接种处理的1.13~2.76倍 | [ |
炭疽菌属真菌 Colletotrichum DZJ07 | 诱导PPO、POD和PAL防御酶活性的提高 | 接菌后苗期小麦纹枯病的发病率显著低于对照 | [ | |
链格孢霉属真菌 Alternaria alternate LQ1230 | 合成IAA,降低活性氧和MDA含量,诱导植物抗性 | 小麦幼苗根长比对照显著增加2.04倍,增强抗旱能力 | [ | |
放线菌 Actinomycetes | 天蓝色链霉菌 Streptomyces coelicolor DE07 | 合成IAA,诱导植株抗性 | 促进小麦植株的地上部和根生长,提高分蘖数、穗粒数、生物量及产量 | [ |
易变链霉菌 Streptomyces mutabilis IA1 | 合成IAA、GA,拮抗病原真菌 | 促进小麦幼苗生长,保护小麦幼苗免受镰刀菌的侵染 | [ |
类别 Classification | 植物根际促 生菌PGPR | 抗旱机制 Drought resistance mechanisms | 参考文献 References |
---|---|---|---|
细菌 Bacteria | 伯克霍尔德氏菌 Burkholderia phytofirmans PsJN | 提高光合速率、水分利用效率和叶绿素含量,改善小麦抗氧化水平 | [ |
荧光假单胞菌 Pseudomonas fluorescens DPB15 | 产ACC脱氨酶,调控乙烯水平 | [ | |
固氮螺菌 Azospirillum brasilense | 产胞外多糖、ABA,形成生物膜 | [ | |
嗜麦芽窄食单胞菌 Stenotrophomonas maltophilia SBP-9 | 降低MDA含量,提高SOD、CAT和POX等抗氧化酶活性 | [ | |
真菌 Fungi | 单孢球囊霉 Glomus monosporum | 扩大根系的表面积和吸水范围,提高水分利用率 | [ |
印度梨形孢菌 Piriformospora indica | 降低活性氧和MDA含量,增加SOD、APX、GR、CAT和POX活性 | [ | |
丛枝菌根真菌 Arbuscular Mycorrhizal | 提高植物吸水能力,减轻干旱胁迫对PSI和PSII结构与功能的损伤,促进土壤团聚体形成 | [ | |
放线菌 Actinomycetes | 娄彻氏链霉菌 S. roche D74 密旋链霉菌S. pactum Act12 | 提高叶片诱导酶活性,增加POD、PPO及PAL活性 | [ |
Table 2 Effect and mechanism of partial PGPR on improving drought resistance of wheat
类别 Classification | 植物根际促 生菌PGPR | 抗旱机制 Drought resistance mechanisms | 参考文献 References |
---|---|---|---|
细菌 Bacteria | 伯克霍尔德氏菌 Burkholderia phytofirmans PsJN | 提高光合速率、水分利用效率和叶绿素含量,改善小麦抗氧化水平 | [ |
荧光假单胞菌 Pseudomonas fluorescens DPB15 | 产ACC脱氨酶,调控乙烯水平 | [ | |
固氮螺菌 Azospirillum brasilense | 产胞外多糖、ABA,形成生物膜 | [ | |
嗜麦芽窄食单胞菌 Stenotrophomonas maltophilia SBP-9 | 降低MDA含量,提高SOD、CAT和POX等抗氧化酶活性 | [ | |
真菌 Fungi | 单孢球囊霉 Glomus monosporum | 扩大根系的表面积和吸水范围,提高水分利用率 | [ |
印度梨形孢菌 Piriformospora indica | 降低活性氧和MDA含量,增加SOD、APX、GR、CAT和POX活性 | [ | |
丛枝菌根真菌 Arbuscular Mycorrhizal | 提高植物吸水能力,减轻干旱胁迫对PSI和PSII结构与功能的损伤,促进土壤团聚体形成 | [ | |
放线菌 Actinomycetes | 娄彻氏链霉菌 S. roche D74 密旋链霉菌S. pactum Act12 | 提高叶片诱导酶活性,增加POD、PPO及PAL活性 | [ |
[1] | 刘志勇, 王道文, 张爱民, 梁翰文, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才. 小麦育种行业创新现状与发展趋势[J]. 植物遗传资源学报, 2018, 19(3):430-434 |
[2] | 邵千顺, 王斐, 王克雄, 杨琳. 旱地冬小麦种质资源多样性评价[J]. 江苏农业科学, 2018, 46(15):45-48 |
[3] |
Lata R, Chowdhury S, Gond S K, White J F. Induction of abiotic stress tolerance in plants by endophytic microbes[J]. Letters in Applied Microbiology, 2018, 66(4):268-276
DOI PMID |
[4] |
Niu X G, Song L C, Xiao Y N, Ge W D. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid and their potential in alleviating drought stress[J]. Frontiers in Microbiology, 2018, 8:2580
DOI URL |
[5] | Rani B, Madan S, Sharma K D, Pooja, Kumar A. Influence of arbuscular mycorrhiza on antioxidative system of wheat (Triticum aestivum) under drought stress[J]. Indian Journal of Agricultural Sciences, 2018, 88(2):289-295 |
[6] |
Naylor D, Coleman-Derr D. Drought stress and root-associated bacterial communities[J]. Frontiers in Plant Science, 2018, 8:2223
DOI URL |
[7] |
Gray E J, Smith D L. Intracellular and extracellular PGPR: Commonalities and distinctions in the plant-bacterium signaling processes[J]. Soil Biology and Biochemistry, 2005, 37(3):395-412
DOI URL |
[8] |
Ijaz M, Tahir M, Shahid M, Ul-Allah S, Sattar A, Sher A, Mahmood K, Hussain M. Combined application of biochar and PGPR consortia for sustainable production of wheat under semiarid conditions with a reduced dose of synthetic fertilizer[J]. Brazilian Journal of Microbiology, 2019, 50(2):449-458
DOI URL |
[9] |
Ahmad M, Zahir Z A, Khalid M, Nazli F, Arshad M. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer's fields[J]. Plant Physiology and Biochemistry, 2013, 63:170-176
DOI URL |
[10] |
Sokolova M G, Akimova G P, Vaishlya O B. Effect of phytohormones synthesized by rhizosphere bacteria on plants[J]. Applied Biochemistry and Microbiology, 2011, 47(3):274-278
DOI URL |
[11] |
Kumar A, Maurya B R, Raghuwanshi R. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.)[J]. Biocatalysis and Agricultural Biotechnology, 2014, 3(4):121-128
DOI URL |
[12] |
Shaharoona B, Jamro G M, Zahir Z A, Arshad M, Memon K S. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-Deaminase for improving growth and yield of wheat (Triticum aestivum L.)[J]. Journal of Microbiology and Biotechnology, 2007, 17(8):1300-1307
PMID |
[13] |
Dal Cortivo C, Barion G, Visioli G, Mattarozzi M, Mosca G, Vamerali T. Increased root growth and nitrogen accumulation in common wheat following PGPR inoculation: Assessment of plant-microbe interactions by ESEM[J]. Agriculture, Ecosystems and Environment, 2017, 247:396-408
DOI URL |
[14] |
Zaheer M S, Raza M A S, Saleem M F, Khan I H, Ahmad S, Iqbal R, Manevski K. Investigating the effect of Azospirillum brasilense and Rhizobium pisi on agronomic traits of wheat (Triticum aestivum L.)[J]. Archives of Agronomy and Soil Science, 2019, 65(11):1554-1564
DOI URL |
[15] |
Etesami H, Beattie G A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops[J]. Frontiers in Microbiology, 2018, 9:148
DOI PMID |
[16] |
Timmusk S, Wagner E G H,. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses[J]. Molecular Plant-Microbe Interactions, 1999, 12(11):951-959
PMID |
[17] |
Ma X N, Luo W Q, Li J, Wu F Y. Arbuscular mycorrhizal fungi increase both concentrations and bioavilability of Zn in wheat (Triticum aestivum L.) grain on Zn-spiked soils[J]. Applied Soil Ecology, 2019, 135:91-97
DOI URL |
[18] |
Luo W Q, Li J, Ma X N, Niu H, Hou S W, Wu F Y. Effect of arbuscular mycorrhizal fungi on uptake of selenate, selenite, and selenomethionine by roots of winter wheat[J]. Plant and Soil, 2019, 438(1/2):71-83
DOI URL |
[19] | 丁婷, 孙微微, 韩亚惠, 龙健, 江海洋. 杜仲内生真菌DZJ07在小麦根际定殖及对根部酶活的影响[J]. 核农学报, 2015, 29(6):1149-1157 |
[20] |
Qiang X J, Ding J J, Lin W, Li Q Z, Xu C Y, Zheng Q, Li Y Z. Alleviation of the detrimental effect of water deficit on wheat (Triticum aestivum L.) growth by an indole acetic acid-producing endophytic fungus[J]. Plant and Soil, 2019, 439(1/2):373-391
DOI URL |
[21] |
Yandigeri M S, Meena K K, Singh D, Malviya N, Singh D P, Solanki M K, Yadav A K, Arora D K. Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions[J]. Plant Growth Regulation, 2012, 68(3):411-420
DOI URL |
[22] |
Tamreihao K, Ningthoujam D S, Nimaichand S, Singh E S, Reena P, Singh S H, Nongthomba U. Biocontrol and plant growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder formulation for application as biofertilizer agents for rice plant[J]. Microbiological Research, 2016, 192:260-270
DOI PMID |
[23] |
Ardakani M R, Mazaheri D, Mafakheri S, Moghaddam A. Absorption efficiency of N, P, K through triple inoculation of wheat (Triticum aestivum L.) by Azospirillum brasilense, Streptomyces sp., Glomus intraradices and manure application[J]. Physiology and Molecular Biology of Plants, 2011, 17(2):181-192
DOI URL |
[24] |
Flores-Felix J D, Silva L R, Rivera L P, Marcos-Garcia M, Garcia-Fraile P, Martinez-Molina E, Mateos P F, Velazquez E, Andrade P, Rivas R. Plants probiotics as a tool to produce highly functional fruits: The case of Phyllobacterium and Vitamin C in strawberries[J]. PLoS One, 2015, 10(4):e0122281
DOI URL |
[25] | 薛应钰, 叶巍, 杨树, 李培, 徐秉良. 一株溶磷菌的分离鉴定及溶磷促生作用[J]. 干旱地区农业研究, 2019, 37(4):253-262 |
[26] |
Richardson A E, Barea J M, McNeill A M, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and Soil, 2009, 321(1/2):305-339
DOI URL |
[27] | 赵为容. 小麦亲和性根际解磷菌解磷机理及促生效果研究[D]. 合肥: 安徽农业大学, 2018 |
[28] |
Tarafdar J C, Marschner H. Efficiency of vam hyphae in utilization of organic phosphorus by wheat plants[J]. Soil Science and Plant Nutrition, 1994, 40(4):593-600
DOI URL |
[29] | Mpanga I K, Dapaah H K, Geistlinger J, Ludewig U, Neumann G. Soil type-dependent interactions of P-solubilizing microorganisms with organic and inorganic fertilizers mediate plant growth promotion in tomato[J]. Agronomy-Basel, 2018, 8(10):213 |
[30] | Sangeeth K, Bhai R S, Srinivasan V. Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere[J]. Journal of Spices and Aromatic Crops, 2012, 21(2):118-124 |
[31] | 李九美. 小麦溶钾细菌对小麦生长和养分吸收利用的影响[D]. 合肥: 安徽农业大学, 2016 |
[32] | 盛下放, 黄为一. 硅酸盐细菌NBT菌株生理特性的研究[J]. 土壤学报, 2001(4):569-574 |
[33] |
Li H Y, Qiu Y Z, Yao T, Ma Y C, Zhang H R, Yang X L. Effects of PGPR microbial inoculants on the growth and soil properties of Avena sativa, Medicago sativa, and Cucumis sativus seedlings[J]. Soil and Tillage Research, 2020, 199:104577
DOI URL |
[34] | Anwar S, Ali B, Sajid I. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds[J]. Frontiers in Microbiology, 2016, 7:1334 |
[35] | Radzki W, Manero F J G, Algar E, Garcia J A L, Garcia-Villaraco A, Solano B R. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture[J]. Antonie Van Leeuwenhoek International, 2013, 104(3):321-330 |
[36] | Hillel D, Hatfield J L. Encyclopedia of Soils in the Environment[M]. Amsterdam: Elsevier, 2005: 3 |
[37] |
Ahmed A, Hasnain S. Auxin-producing Bacillus sp.: Auxin quantification and effect on the growth of Solanum tuberosum[J]. Pure and Applied Chemistry, 2010, 82(1):313-319
DOI URL |
[38] |
Zerrouk I Z, Rahmoune B, Khelifi L, Mounir K, Baluska F, Ludwig-Muller J. Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA[J]. Acta Physiologiae Plantarum, 2019, 41(6):91
DOI URL |
[39] |
Liu F C, Xing S J, Ma H L, Du Z Y, Ma B Y. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings[J]. Applied Microbiology and Biotechnology, 2013, 97(20):9155-9164
DOI URL |
[40] | 刘方春, 马海林, 杜振宇, 马丙尧, 井大炜. 金银花容器苗对干旱胁迫下接种根际促生细菌的生理响应[J]. 生态学报, 2015, 35(21):7003-7010 |
[41] |
Turan M, Ekinci M, Yildirim E, Güneö A, Karagöz K, Kotan R, Dursun A. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings[J]. Turkish Journal of Agriculture and Forestry, 2014, 38(3):327-333
DOI URL |
[42] |
Broek A V, Lambrecht M, Eggermont K, Vanderleyden J. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense[J]. Journal of Bacteriology, 1999, 181(4):1338-1342
PMID |
[43] |
Combes-Meynet E, Pothier J F, Moenne-Loccoz Y, Prigent-Combaret C. The Pseudomonas secondary metabolite 2,4-Diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion[J]. Molecular Plant-Microbe Interactions, 2011, 24(2):271-284
DOI PMID |
[44] |
Tisdall J M, Oades J M. Organic matter and water stable aggregates in soils[J]. Journal of Soil Science, 1982, 33(2):141-163
DOI URL |
[45] |
Panda R, Das M, Nayak S K. Estimation and optimization of exopolysaccharide production from rice rhizospheric soil and its interaction with soil carbon pools[J]. Rhizosphere, 2020, 14:100206
DOI URL |
[46] |
Alami Y, Achouak W, Marol C, Heulin T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producingRhizobium sp. strain isolated from sunflower roots[J]. Applied and Environmental Microbiology, 2000, 66(8):3393-3398
PMID |
[47] |
Timmusk S, Abd El-Daim I A, Copolovici L, Tanilas T, Kännaste K, Behers L, Nevo E, Seisenbaeva G, Stenström E, Niinemets Ülo. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: Enhanced biomass production and reduced emissions of stress volatiles[J]. PLoS One, 2014, 9(5):e96086
DOI URL |
[48] | 张文平, 王清, 黄诗宸, 吴佩佳, 程新. 乳酸菌胞外多糖对水稻生长及土壤理化性质的影响[J]. 浙江农业学报, 2019, 31(1):130-138 |
[49] |
Kaushal M, Wani S P. Rhizobacterial-plant interactions: Strategies ensuring plant growth promotion under drought and salinity stress[J]. Agriculture, Ecosystems and Environment, 2016, 231:68-78
DOI URL |
[50] |
Vaishnav A, Kumari S, Jain S, Varma A, Choudhary D K. Putative bacterial volatile-mediated growth in soybean (Glycine max L. Merrill) and expression of induced proteins under salt stress[J]. Journal of Applied Microbiology, 2015, 119(2):539-551
DOI PMID |
[51] |
Ryu C M, Farag M A, Hu C H, Reddy M S, Kloepper J W, Par P W. Bacterial volatiles induce systemic resistance in Arabidopsis[J]. Plant Physiology, 2004, 134(3):1017-1026
DOI URL |
[52] |
Zhang H M, Kim M S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag M A, Ryu C M, Allen R, Melo I S. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis[J]. Planta, 2007, 226(4):839
DOI URL |
[53] |
Bhattacharyya D, Yu S M, Lee Y H. Volatile compounds from Alcaligenes faecalis JBCS1294 confer salt tolerance in Arabidopsis thaliana through the auxin and gibberellin pathways and differential modulation of gene expression in root and shoot tissues[J]. Plant Growth Regulation, 2015, 75(1):297-306
DOI URL |
[54] |
Naveed M, Hussain M B, Zahir Z A, Mitter B, Sessitsch A. Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN[J]. Plant Growth Regulation, 2014, 73(2):121-131
DOI URL |
[55] |
Beneduzi A, Ambrosini A, Passaglia L M P. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents[J]. Genetics and Molecular Biology, 2012, 35(4):1044-1051
DOI URL |
[56] |
Ye X F, Li Z K, Luo X, Wang W H, Li Y K, Li R, Zhang B, Qiao Y, Zhou J, Fan J Q, Wang H, Huang Y, Gao H, Cui Z L, Zhang R F. A predatory myxobacterium controls cucumber Fusarium wilt by regulating the soil microbial community[J]. Microbiome, 2020, 8(1):49
DOI URL |
[57] |
Kumar H, Bajpai V K, Dubey R C, Maheshwari D K, Kang S C. Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer[J]. Crop Protection, 2010, 29(6):591-598
DOI URL |
[58] |
Arora N K, Khare E, Oh J H, Kang S C, Maheshwari D K. Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici[J]. World Journal of Microbiology and Biotechnology, 2008, 24(4):581-585
DOI URL |
[59] | Li Y L, Gu Y L, Li J, Xu M Z, Wei Q, Wang Y H. Biocontrol agent Bacillus amyloliquefaciens LJ02 induces systemic resistance against cucurbits powdery mildew[J]. Frontiers in Microbiology, 2015, 6:883 |
[60] |
Okada K, Abe H, Arimura G I. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants[J]. Plant and Cell Physiology, 2015, 56(1):16-27
DOI URL |
[61] | Van Loon L C, Bakker P. Induced systemic resistance as a mechanism of disease suppression by Rhizobacteria[M]//Siddiqui Z A. PGPR: Biocontrol and Biofertilization. Springer, Dordrecht, 2005: 39-66 |
[62] |
Konnova S A, Brykova O S, Sachkova O A, Egorenkova I V, Ignatov V V. Protective role of the polysaccharide-containing capsular components of Azospirillum brasilense[J]. Microbiology, 2001, 70(4):436-440
DOI URL |
[63] |
Cohen A C, Bottini R, Piccoli P N. Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content inArabidopsis plants[J]. Plant Growth Regulation, 2008, 54(2):97-103
DOI URL |
[64] |
Singh R P, Jha P N. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants[J]. Frontiers in Microbiology, 2017, 8:1945
DOI URL |
[65] | Mathur S, Tomar R S, Jajoo A. Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress[J]. Photosynjournal Research, 2019, 139(1/2/3):227-238 |
[66] |
Sun C, Johnson M J, Cai D G, Sherameti I, Oelmüller R, Lou B G. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein[J]. Journal of Plant Physiology, 2010, 167(12):1009-1017
DOI URL |
[67] |
Bitterlich M, Sandmann M, Graefe J. Arbuscular mycorrhiza alleviates restrictions to substrate water flow and delays transpiration limitation to stronger drought in tomato[J]. Frontiers in Plant Science, 2018, 9:154
DOI PMID |
[68] | 马军妮. 放线菌对玉米小麦的促生抗旱作用及机理研究[D]. 杨凌: 西北农林科技大学, 2016 |
[69] | 刘玉涛, 张凯, 马军妮, 来航线, 薛泉宏. 两株链霉菌对小麦幼苗生长及诱导抗性的影响[J]. 西北农业学报, 2018, 27(5):658-666 |
[70] |
Nocker A, Fernández P S, Montijn R, Schuren F. Effect of air drying on bacterial viability: A multiparameter viability assessment[J]. Journal of Microbiological Methods, 2012, 90(2):86-95
DOI URL |
[71] |
Din B U, Sarfraz S, Xia Y, Kamran M A, Javed M T, Sultan T, Hussain Munis M F, Chaudhary H J. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress[J]. Ecotoxicology and Environmental Safety, 2019, 183:109466
DOI URL |
[72] |
Jochum M D, McWilliams K L, Borrego E J, Kolomiets M V, Niu G H, Pierson E A, Jo Y K. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses[J]. Frontiers in Microbiology, 2019, 10:2106
DOI URL |
[73] |
De Vries F T, Griffiths R I, Knight C G, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 2020, 368(6488):270-274
DOI URL |
[74] |
Figueiredo M V B, Burity H A, Martínez C R, Chanway C P. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici[J]. Applied Soil Ecology, 2008, 40(1):182-188
DOI URL |
[75] |
Gong Z Z, Xiong L M, Shi H Z, Yang S H, Herrera-Estrella L R, Xu G H, Chao D Y, Li J R, Wang P Y, Qin F, Li J J, Ding Y L, Shi Y T, Wang Y, Yang Y Q, Guo Y, Zhu J K. Plant abiotic stress response and nutrient use efficiency[J]. Science China-Life Sciences, 2020, 63(5):635-674
DOI URL |
[76] |
Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants[J]. FEMS Microbiology Letters, 2009, 296(1):52-59
DOI PMID |
[77] |
Cho S M, Kang B R, Han S H, Anderson A J, Park J Y, Lee Y H, Cho B H, Yang K Y, Ryu C M, Kirn Y C. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 2008, 21(8):1067-1075
DOI URL |
[78] |
Mishra S K, Khan M H, Misra S, Dixit V K, Gupta S, Tiwari S, Chandra-Gupta S, Chauhan P S. Drought tolerant Ochrobactrum sp. inoculation performs multiple roles in maintaining the homeostasis in Zea mays L. subjected to deficit water stress[J]. Plant Physiology and Biochemistry, 2020, 150:1-14
DOI URL |
[79] |
Dastogeer K M G, Li H, Sivasithamparam K, Jones M G K, Du X, Ren Y L, Wylie S J. Metabolic responses of endophytic Nicotiana benthamiana plants experiencing water stress[J]. Environmental and Experimental Botany, 2017, 143:59-71
DOI URL |
[80] |
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Experimental Botany, 2012, 63(4):1593-1608
DOI URL PMID |
[81] |
Couee I, Sulmon C, Gouesbet G, El Amrani A. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. Journal of Experimental Botany, 2006, 57(3):449-459
DOI URL |
[82] | 陈超琼. 骆驼刺内生细菌新种Pantoea alhagi LTYR-11Z的鉴定及其促作物抗旱机制初步研究[D]. 杨凌: 西北农林科技大学, 2017 |
[83] |
Shukla N, Awasthi R P, Rawat L, Kumar J. Seed biopriming with drought tolerant isolates of Trichoderma harzianum promote growth and drought tolerance in Triticum aestivum[J]. Annals of Applied Biology, 2015, 166(2):171-182
DOI URL |
[84] |
Zhang H M, Murzello C, Sun Y, Kim M S, Xie X T, Jeter R M, Zak J C, Dowd S E, Paré P W. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03)[J]. Molecular Plant-Microbe Interactions, 2010, 23(8):1097-1104
DOI URL |
[85] | 牛远, 李玲芬, 杨修艳, 汤宇峰, 王飞兵, 陈新红. 氯化胆碱和海藻糖对油菜蕾薹期干旱胁迫的缓解效应研究和耐旱指标筛选[J]. 核农学报, 2020, 34(4):860-869 |
[86] |
Forni C, Duca D, Glick B R. Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria[J]. Plant and Soil, 2017, 410(1/2):335-356
DOI URL |
[87] |
Ma W B, Penrose D M, Glick B R. Strategies used by rhizobia to lower plant ethylene levels and increase nodulation[J]. Canadian Journal of Microbiology, 2002, 48(11):947-954
DOI URL |
[88] | Honma M, Shimomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid[J]. Agricultural and Biological Chemistry, 1978, 42(10):1825-1831 |
[89] |
Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minamisawa K. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species[J]. Applied Environmental Microbiology, 2001, 67(11):5285-5293
DOI URL |
[90] | Danish S, Zafar-ul-Hye M, Hussain M, Shaaban M, Nunez-Delgado A, Hussain S, Qayyum M F. Rhizobacteria with ACC-deaminase activity improve nutrient uptake, chlorophyll contents and early seedling growth of wheat under PEG-induced osmotic stress[J]. International Journal of Agriculture and Biology, 2019, 21(6):1212-1220 |
[91] |
Zhang G Z, Sun Y L, Sheng H, Li H C, Liu X P. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents[J]. Plant Physiology and Biochemistry, 2018, 125:178-184
DOI URL |
[92] |
Chandra D, Srivastava R, Sharma A K. Influence of IAA and ACC deaminase producing fluorescent pseudomonads in alleviating drought stress in wheat (Triticum aestivum)[J]. Agricultural Research, 2018, 7(3):290-299
DOI URL |
[93] |
Li T, Sun Y Q, Ruan Y, Xu L J, Hu Y J, Hao Z P, Zhang X, Li H, Wang Y S, Yang L G, Chen B D. Potential role of D-myo-inositol-3-phosphate synthase and 14-3-3 genes in the crosstalk between Zea mays and Rhizophagus intraradices under drought stress[J]. Mycorrhiza, 2016, 26(8):879-893
DOI URL |
[94] |
Xu L J, Li T, Wu Z X, Feng H Y, Yu M, Zhang X, Chen B D. Arbuscular mycorrhiza enhances drought tolerance of tomato plants by regulating the 14-3-3 genes in the ABA signaling pathway[J]. Applied Soil Ecology, 2018, 125:213-221
DOI URL |
[95] |
Barnawal D, Bharti N, Pandey S S, Pandey A, Chanotiya C S, Kalra A. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels andTaCTR1/TaDREB2 expression[J]. Physiologia Plantarum, 2017, 161(4):502-514
DOI URL |
[96] |
Kasim W A, Osman M E, Omar M N, Abd El-Daim I A, Bejai S, Meijer J. Control of drought stress in wheat using plant-growth-promoting bacteria[J]. Journal of Plant Growth Regulation, 2013, 32(1):122-130
DOI URL |
[97] |
Abd El-Daim I A, Bejai S, Fridborg I, Meijer J. Identifying potential molecular factors involved in Bacillus amyloliquefaciens 5113 mediated abiotic stress tolerance in wheat[J]. Plant Biology, 2018, 20(2):271-279
DOI PMID |
[98] |
Pereyra M A, García P, Colabelli M N, Barassi C A, Creus C M. A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile[J]. Applied Soil Ecology, 2012, 53:94-97
DOI URL |
[99] |
Bharti N, Pandey S S, Barnawal D, Patel V K, Kalra A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress[J]. Scientific Reports, 2016, 6(1):1-16
DOI URL |
[100] |
Ghosh D, Sen S, Mohapatra S. Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain[J]. Annals of Microbiology, 2017, 67(10):655-668
DOI URL |
[101] |
Sandhya V, Ali S Z, Grover M, Reddy G, Venkateswarlu B. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress[J]. Plant Growth Regulation, 2010, 62(1):21-30
DOI URL |
[102] | Miller R M, Jastrow J D. Mycorrhizal Fungi Influence Soil Structure[M]//Kapulnik Y, Douds D D. Arbuscular Mycorrhizas: Physiology and Function. Springer: Dordrecht, 2000: 3-18 |
[103] |
Rillig M C, Mardatin N F, Leifheit E F, Antunes P M. Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates[J]. Soil Biology and Biochemistry, 2010, 42(7):1189-1191
DOI URL |
[104] | Hussain M B, Zahir Z A, Asghar H N, Asgher M. Can catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat?[J]. International Journal of Agriculture and Biology, 2014, 16(1):3-13 |
[105] |
Sandhya V, Z A S K, Grover M, Reddy G, Venkateswarlu B. Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology and Fertility of Soils, 2009, 46(1):17-26
DOI URL |
[106] |
Guo J K, Muhammad H, Lv X, Wei T, Ren X H, Jia H L, Atif S, Hua L. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review[J]. Chemosphere, 2020, 246:125823
DOI URL |
[107] |
Seleiman M F, Ali S, Refay Y, Rizwan M, Alhammad B A, El-Hendawy S E. Chromium resistant microbes and melatonin reduced Cr uptake and toxicity, improved physio-biochemical traits and yield of wheat in contaminated soil[J]. Chemosphere, 2020, 250:126239
DOI PMID |
[108] | 刘玉涛, 杨斌, 张凯, 马军妮, 温宏伟, 来航线, 薛泉宏. 链霉菌剂种子包衣对小麦幼穗分化及生物学特性的影响[J]. 麦类作物学报, 2020, 40(8):990-1001 |
[1] | LIU Lingling, AN Congcong, YE Ximiao, YUAN Jianlong, WANG Yuping, ZHANG Feng. Relationships Among Apical Dominance of Potato Tuber, the Number of Main Stem and Yield Components [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 329-340. |
[2] | BAN Wenhui, WANG Xingqiang, LIU Qiangjuan, SUN Jianbo, LYU Kaiyuan, KANG Jianhong. Effects of Nitrogen Application Rate on Potato Yield, Starch Content and Related Enzyme Metabolic During Tuber Formation After High Temperature Stress [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 422-434. |
[3] | DONG Fei, LI Feng, JIA Yaqin, YANG Feng, YAN Qiuyan, LU Jinxiu, SHEN Yanting. Effect of Nitrogen Topdressing Rate on Yield and Quality of Black-Grained Wheat Varieties (Strains) [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 435-444. |
[4] | LI Yulin, XU Chengyu, HU Xue, ZANG Qian, LU Xuanrui, JIANG Min, ZHUANG Hengyang, HUANG Lifen. Soil Nutrient Characteristics of Organic and Conventional Fertilization Models and Effects on Yields and Qualities of Japonica Rice of Different Palatability Types [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 445-455. |
[5] | GAO Tiantian, CHAI Shouxi, LI Yawei, YANG Jiajia, CHENG Hongbo, ZHAO Guangcai. Effects of Straw Strip Mulching on Grain-Filling Rate and Yield of Wheat in Northwest Dryland [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 183-189. |
[6] | LI Junxia, QIN Na, ZHU Cancan, WANG Chunyi, DAI Shutao, SONG Yinghui, CHEN Yuxiang. Study on Photosynthetic Characteristics of Foxtail Millet Mutant With Yellow Leaf Colour [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 1964-1970. |
[7] | LI Man, ZHANG Xiao, LIU Datong, JIANG Wei, GAO Derong, ZHANG Yong. Research on Quality Evaluation Indices of Weak Gluten Wheat [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 1979-1986. |
[8] | FANG Yanjie, ZHANG Xucheng, HOU Huizhi, YU Xianfeng, WANG Hongli, MA Yifan, ZHANG Guoping, LEI Kangning. Effects of Tillage and Fertilization on Soil Moisture and Yields of Forage Maize [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2127-2135. |
[9] | WANG Siyang, LI Guanghao, LU Weiping, LU Dalei. Effects of Slow-Release Fertilizer Application Stage on Yield and Quality of Spring-Sown Fresh Waxy Maize [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2136-2144. |
[10] | ZHANG Ting, WEN Hongwei, YUAN Kai, LU Lahu, SHI Xiaofang, ZHANG Mingyi, JI Hutai, YANG Bin. Construction of Ethyl Methane Sulfonate Mutant Library of Jinmai 47 and Preliminary Analysis of Quality Characteristics of High Generation Mutants [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1731-1739. |
[11] | YANG Shurong, FU Luping, FEI Shuaipeng, LI Simin, CHEN Xinmin, XIA Xianchun, XIAO Yonggui, MENG Yaxiong. Accumulation and Partitioning Characteristics of Photosynthetic Product of 7 Main Cultivars in Northern Winter Wheat Zone [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1740-1750. |
[12] | LIU Jianting, ZENG Meijuan, WEN Wenxu, WANG Bin, CHEN Mindong, YE Xinru, ZHU Haisheng, WEN Qingfang. Cloning and Drought Response Pattern of CpNCED2, a 9-cis-epoxycarotenoid Dioxygenase Gene From Zucchini (Cucurbita pepo L.) [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1751-1760. |
[13] | HU Haiyan, DONG Qingfeng, LI Dongmei, ZHOU Feng, LIU Qili, LIU Mingjiu, LI Chengwei. Disease Investigation and Predominant Pathogen Analysis of Wheat Crown Rot in Henan Province [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1802-1808. |
[14] | TIAN Yixin, GAO Fengju, CAO Pengpeng, GAO Qi, XIA Wenrong. Effect of Sowing Date on Agronomic Characters, Quality and Yield of New High Protein Soybean Varieties (lines) [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1900-1907. |
[15] | GENG Mengyao, CHENG Wencong, CHEN Lihong, LI Yajun, CHEN Xiaohong. Effects of Cholinium Fatty Acids and Cholinium Amino Acids on Seed Germination of Maize Under PEG Simulated Drought Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1916-1922. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||