Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (9): 2154-2164.DOI: 10.11869/j.issn.100-8551.2021.09.2154
• Isotope Tracer Technique·Ecology and Environment·Physiology • Previous Articles Next Articles
YU Minglong1(), JIN Dan1, LIU Meiling1, LI Yao1, ZHENG Dianfeng1,2,3,*(
), FENG Naijie1,2,3, LIANG Xilong2
Received:
2020-08-13
Accepted:
2020-11-26
Online:
2021-09-10
Published:
2021-07-22
Contact:
ZHENG Dianfeng
余明龙1(), 靳丹1, 刘美玲1, 李瑶1, 郑殿峰1,2,3,*(
), 冯乃杰1,2,3, 梁喜龙2
通讯作者:
郑殿峰
作者简介:
余明龙,男,主要从事作物化控及大豆生理研究。E-mail: m15776559827@163.com
基金资助:
YU Minglong, JIN Dan, LIU Meiling, LI Yao, ZHENG Dianfeng, FENG Naijie, LIANG Xilong. Effects of Prohexadione-Calcium on Root Growth and Physiological Responses of Different Salt-Tolerance Soybean Varieties Under Saline-Alkali Stress[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2154-2164.
余明龙, 靳丹, 刘美玲, 李瑶, 郑殿峰, 冯乃杰, 梁喜龙. 调环酸钙对盐碱胁迫下不同耐盐性大豆品种根系生长及生理特性的影响[J]. 核农学报, 2021, 35(9): 2154-2164.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.09.2154
品种 Varieties | 处理 treatments | 根长 Root length/cm | 地上部鲜重 Shoot fresh weight/g | 根鲜重 Root fresh weight/g | 地上部干重 Shoot dry weight/g | 根干重 Root dry weight/g |
---|---|---|---|---|---|---|
合丰50 Hefeng50 | CK | 43.7±0.7ab | 10.18±0.65a | 8.11±0.28a | 2.782±0.152a | 1.076±0.082a |
Pro-Ca | 46.3±2.0a | 8.98±0.43a | 7.46±0.32a | 2.224±0.046b | 0.922±0.053b | |
SA | 36.7±0.8c | 8.35±0.85a | 6.12±0.21b | 2.013±0.226b | 0.642±0.005c | |
SA+Pro-Ca | 40.8±0.5b | 8.94±0.59a | 6.31±0.50b | 2.391±0.158ab | 0.886±0.014b | |
垦丰16 Kenfeng16 | CK | 41.1±1.1a | 8.80±0.28b | 6.94±0.39b | 2.257±0.057b | 0.965±0.06b |
Pro-Ca | 42.3±0.7a | 10.24±0.65a | 7.91±0.17a | 2.800±0.162a | 1.134±0.044a | |
SA | 30.2±1.5c | 7.37±0.44c | 5.81±0.22c | 1.999±0.134b | 0.680±0.043c | |
SA+Pro-Ca | 37.3±0.6b | 8.15±0.23bc | 6.96±0.36b | 2.120±0.073b | 0.936±0.038b |
Table 1 Effects of exogenous Pro-Ca on seedling growth of different salt-tolerance soybean varieties under saline-alkali stress
品种 Varieties | 处理 treatments | 根长 Root length/cm | 地上部鲜重 Shoot fresh weight/g | 根鲜重 Root fresh weight/g | 地上部干重 Shoot dry weight/g | 根干重 Root dry weight/g |
---|---|---|---|---|---|---|
合丰50 Hefeng50 | CK | 43.7±0.7ab | 10.18±0.65a | 8.11±0.28a | 2.782±0.152a | 1.076±0.082a |
Pro-Ca | 46.3±2.0a | 8.98±0.43a | 7.46±0.32a | 2.224±0.046b | 0.922±0.053b | |
SA | 36.7±0.8c | 8.35±0.85a | 6.12±0.21b | 2.013±0.226b | 0.642±0.005c | |
SA+Pro-Ca | 40.8±0.5b | 8.94±0.59a | 6.31±0.50b | 2.391±0.158ab | 0.886±0.014b | |
垦丰16 Kenfeng16 | CK | 41.1±1.1a | 8.80±0.28b | 6.94±0.39b | 2.257±0.057b | 0.965±0.06b |
Pro-Ca | 42.3±0.7a | 10.24±0.65a | 7.91±0.17a | 2.800±0.162a | 1.134±0.044a | |
SA | 30.2±1.5c | 7.37±0.44c | 5.81±0.22c | 1.999±0.134b | 0.680±0.043c | |
SA+Pro-Ca | 37.3±0.6b | 8.15±0.23bc | 6.96±0.36b | 2.120±0.073b | 0.936±0.038b |
Fig.1 Effects of exogenous Pro-Ca on EL and MDA content in roots of different salt-tolerant soybean varieties under saline-alkali stress Note: Different lowercase letters indicate significant difference among treatments at 0.05 level. The same as following.
Fig.2 Effects of exogenous Pro-Ca on O 2 - · production rate and H2O2 content in roots of different salt-tolerant soybean varieties under saline-alkali stress
Fig.3 Effects of exogenous Pro-Ca on activities of SOD, POD, CAT, and APX in roots of different salt-tolerant soybean varieties under saline-alkali stress
主成分 Principal component | 合丰50 Hefeng50 | 垦丰16 Kenfeng16 | ||||
---|---|---|---|---|---|---|
特征值 Eigen values | 方差比例 Proportion of variance/% | 累计方差 Cumulative variance/% | 特征值 Eigen values | 方差比例 Proportion of variance/% | 累计方差 Cumulative variance/% | |
PC1 | 9.470 | 59.188 | 59.188 | 6.997 | 43.729 | 43.729 |
PC2 | 2.713 | 16.955 | 76.143 | 3.512 | 21.950 | 65.678 |
PC3 | 1.554 | 9.715 | 85.858 | 3.045 | 19.033 | 84.711 |
Table 2 Total variance explained
主成分 Principal component | 合丰50 Hefeng50 | 垦丰16 Kenfeng16 | ||||
---|---|---|---|---|---|---|
特征值 Eigen values | 方差比例 Proportion of variance/% | 累计方差 Cumulative variance/% | 特征值 Eigen values | 方差比例 Proportion of variance/% | 累计方差 Cumulative variance/% | |
PC1 | 9.470 | 59.188 | 59.188 | 6.997 | 43.729 | 43.729 |
PC2 | 2.713 | 16.955 | 76.143 | 3.512 | 21.950 | 65.678 |
PC3 | 1.554 | 9.715 | 85.858 | 3.045 | 19.033 | 84.711 |
Fig.5 Effects of exogenous Pro-Ca on soluble sugar, soluble protein and proline contents in roots of different salt-tolerant soybean varieties under saline-alkali stress
Fig.6 Effects of exogenous Pro-Ca on feature vector of saline-alkali tolerance indexes in roots of different salt-tolerant soybean varieties under saline-alkali stress
Fig.7 Effects of exogenous Pro-Ca on comprehensive scores of saline-alkali tolerance indexes in roots of different salt-tolerant soybean varieties under saline-alkali stress
[1] |
Tina S F, Guo R Z, Zou X X, Zhang X J, Yu X N, Zhan Y, Ci D W, Wang M L, Wang Y F, SI T. Priming with the green leaf volatile (Z)-3-Hexeny-1-yl Acetate enhances salinity stress tolerance in peanut (Arachis hypogaea L.) seedlings[J]. Frontiers in Plant Science, 2019, 10:785
DOI URL |
[2] |
Wang W J, He H S, Zu Y G, Guan Y, Liu Z G, Zhang Z H, Xu H N, Yu X Y. Addition of HPMA affects seed germination, plant growth and properties of heavy saline-alkali soil in northeastern China: Comparison with other agents and determination of the mechanism[J]. Plant and Soil, 2010, 339(1/2):177-191
DOI URL |
[3] | 刘光宇, 关荣霞, 常汝镇, 邱丽娟. 大豆不同器官Na + 含量与苗期耐盐性的相关分析[J]. 作物学报, 2011, 37(7):1266-1273 |
[4] |
Sheyhakinia S, Bamary Z, Einali A, Valizadeh J. The induction of salt stress tolerance by jasmonic acid treatment in roselle (Hibiscus sabdariffa L.) seedlings through enhancing antioxidant enzymes activity and metabolic changes[J]. Biologia, 2020, 75(5):681-692
DOI URL |
[5] |
Dai L Y, Zhu H D, Yin K D, Du J D, Zhang Y X. Seed priming mitigates the effects of saline-alkali stress in soybean seedlings[J]. Chilean Journal of Agricultural Research, 2017, 77(2):118-125
DOI URL |
[6] | Ahmad P, Abdel Latef A A, Hashem A, Abd Allah E F, Gucel S, Tran L S. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea[J]. Frontiers in Plant Science, 2016, 7:347 |
[7] | Xue F Z, Jun L V, Shahid M, Anjum S A, Na J L, Xiu J H, Yu X, Xiao W, San G W. Biomass accumulation, photosynthetic pigments, osmotic adjustments and antioxidant activities of Leymus chinensis in response to BA, BR, and GA[J]. Planta Daninha, 2019, 37:1-9 |
[8] | Becker T B, Schiavon A V, Delazeri E E, Barreto C F, Antunes L E C. Productive behavior of strawberry from potted seedlings produced with application of prohexadione calcium in soilless cultivation[J]. Emirates Journal of Food and Agriculture, 2020, 32(4):309-318 |
[9] | 潘明君, 尹永强, 沈方科, 罗宝雄, 唐新莲, 何虹华, 陈登科. 调环酸钙对低温胁迫下烟草幼苗生理指标的影响[J]. 西南农业学报, 2016, 29(2):288-293 |
[10] |
Bekheta M A, Abdelhamid M T, El-Morsi A A. Physiological response of vicia faba to prohexadione-calcium under saline conditions[J]. Planta Daninha, 2009, 27(4):769-779
DOI URL |
[11] |
Aghdam M S. Mitigation of postharvest chilling injury in tomato fruit by prohexadione calcium[J]. Journal of Food Science and Technology-mysore, 2013, 50(5):1029-1033
DOI URL |
[12] | 余明龙, 左官强, 李瑶, 郑殿峰, 冯乃杰. 调环酸钙对盐碱胁迫下大豆幼苗光合特性和保护酶活性的调节作用[J]. 中国油料作物学报, 2019, 41(5):741-749 |
[13] |
Gupta P, Srivastava S, Seth C S. 24-Epibrassinolide and Sodium Nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid[J]. Plant and Soil, 2017, 411(1/2):483-498
DOI URL |
[14] | 高俊凤. 植物生理学实验指导 [M]. 北京: 高等教育出版社, 2006: 208-218 |
[15] |
Liu X L, Zhang H, Jin Y Y, Wang M M, Yang H Y, Ma H Y, Jiang C J, Liang Z W. Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes[J]. Plant and Soil, 2019, 438(1/2):39-55
DOI URL |
[16] | 孔祥清, 韦建明, 常国伟, 宋佳, 吕艳东, 王智慧, 殷大伟, 李红宇. 生物炭对盐碱土理化性质及大豆产量的影响[J]. 大豆科学, 2018, 168(4):161-165 |
[17] | 张翯, 顾万荣, 王泳超, 李丽杰, 曾繁星, 杨振芳, 杨德光, 魏湜. DCPTA对盐胁迫下玉米苗期根系生长、渗透调节及膜透性的影响[J]. 生态学杂志, 2015, 34(9):2474-2481 |
[18] |
Jiao Y, Bai Z Z, Xu J Y, Zhao M L, Khan Y, Hu Y J, Shi L X. Metabolomics and its physiological regulation process reveal the salt tolerant mechanism in Glycine soja seedling roots[J]. Plant Physiology and Biochemistry, 2018, 126:187-196
DOI URL |
[19] |
Raja V, Majeed U, Kang H, Andrabi K Ⅰ, John R. Abiotic stress: Interplay between ROS, hormones and MAPKs[J]. Environmental and Experimental Botany, 2017, 137:142-157
DOI URL |
[20] |
Shi Y, Zhang Y, Han W H, Feng R, Hu Y H, Guo J, Gong H J. Silicon enhances water stress tolerance by improving root hydraulic conductance in solanum lycopersicum L[J]. Frontiers in Plant Science, 2016, 7:196
DOI PMID |
[21] |
Zheng Y H, Jia A J, Ning T Y, Xu J L, Li Z J, Jiang G M. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance[J]. Journal of Plant Physiology, 2008, 165(14):1455-1465
DOI URL |
[22] | Ahmad P, Latef A A A, Abd Allah E F, Hashem A, Sarwat M, Anjum N A, Gucel S. Calcium and potassium supplementation enhanced growth, osmolyte secondary metabolite production, and enzymatic antioxidant machinery in cadmium-exposed chickpea (Cicer arietinum L.)[J]. Frontiers in Plant Science, 2016, 7:531 |
[23] |
Wang S F, Sun J J, Li S T, Lu K, Meng H J, Xiao Z C, Zhang Z, Li J N, Luo F, Li N N. Physiological, genomic and transcriptomic comparison of two Brassica napus cultivars with contrasting cadmium tolerance[J]. Plant and Soil, 2019, 441(1/2):71-87
DOI URL |
[24] |
Jia X M, Wang H, Svetla S, Zhu Y F, Hu Y, Cheng L, Zhao T, Wang Y X. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress[J]. Scientia Horticulturae, 2019, 245:154-162
DOI URL |
[25] | 符杨磊, 魏志园, 王宇, 刘潇阳, 王冰冰, 乔亚科, 李桂兰, 张锴. 冀东野生大豆(Glycine soja)耐盐碱性鉴定及耐性生理指标测定[J]. 核农学报, 2020, 34(10):2316-2325 |
[26] |
Sarwar M, Saleem M F, Ullah N, Rizwan M, Ali S, Shahid M R, Alamri S A, Alyemeni M N, Ahmad P. Exogenously applied growth regulators protect the cotton crop from heat-induced injury by modulating plant defense mechanism[J]. Scientific Reports, 2018, 8(1):17086
DOI URL |
[27] |
Wang Z S, Li X N, Zhu X C, Liu S Q, Song F B, Liu F L, Wang Y, Qi X N, Wang F H, Zuo Z Y, Duan P Z, Yang A Z, Cai J, Jiang D. Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat[J]. Plant Soil and Environment, 2017, 63(7):307-314
DOI URL |
[28] | 张翠梅, 师尚礼, 吴芳. 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响[J]. 中国农业科学, 2018, 51(5):868-882 |
[29] |
Sarker U, Oba S. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor[J]. Scientific Reports, 2018, 8:16496
DOI URL |
[30] |
Zhang C M, Shi S L. Physiological and proteomic responses of contrasting Alfalfa (Medicago sativa L.) varieties to peg-induced osmotic stress[J]. Frontiers in Plant Science, 2018, 9:242
DOI URL |
[31] | 宋靓苑, 林恬逸, 许静雯, 柴明良. 盐胁迫下表油菜素内酯对沟叶结缕草愈伤组织生长和再生的影响[J]. 核农学报, 2020, 34(7):1440-1446 |
[32] | 闫慧萍, 彭云玲, 赵小强, 吕玉燕. 外源24-表油菜素内酯对逆境胁迫下玉米种子萌发和幼苗生长的影响[J]. 核农学报, 2016, 30(5):988-996 |
[33] |
Liang W J, Ma X L, Wan P, Liu L Y. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1):286-291
DOI URL |
[34] | 吴杨, 高慧纯, 张必弦, 张海玲, 王全伟, 刘鑫磊, 栾晓燕, 马岩松. 24-表油菜素内酯对盐碱胁迫下大豆生育、生理及细胞超微结构的影响[J]. 中国农业科学, 2017, 50(5):811-821 |
Bai Y D, Xiao S, Zhang Z C, Zhang Y J, Sun H C, Zhang K, Wang X D, Bai Z Y, Li C D, Liu L T. Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat[J]. PeerJ, 2020, 8:e9450 | |
[36] |
Duran-Serantes B, Gonzalez L, Reigosa M J. Comparative physiological effects of three allelochemicals and two herbicides on Dactylis glomerate[J]. Acta Physiologiae Plantarum, 2002, 24(4):385-392
DOI URL |
[37] |
Alisofi S, Einali A, Sangtarash M H. Jasmonic acid-induced metabolic responses in bitter melon (Momordica charantia) seedlings under salt stress[J]. Journal of Horticultural Science and Biotechnology, 2020, 95(2):247-259
DOI |
[38] |
Yoon J Y, Hamayun M, Lee S K, Lee Ⅰ J. Methyl jasmonate alleviated salinity stress in soybean[J]. Journal of Crop Science and Biotechnology, 2009, 12(2):63-68
DOI URL |
[39] | Gao Y, Lu Y, Wu M Q, Liang E X, Li Y, Zhang D P, Yin Z T, Ren X Y, Dai Y, Deng D X, Chen J M. Ability to remove Na + and retain K + correlates with salt tolerance in two maize inbred lines seedlings[J]. Frontiers in Plant Science, 2016, 7:15 |
[1] | WEI Zhiyuan, WANG Yu, SI Zengzhi, WEI Lai, WEN Xiaolei, QIAO Yake, LI Guilan, ZHANG Kai. Analysis of CBL-CIPK Pathway Proteins in Wild Soybean With Saline-Alkali Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1783-1793. |
[2] | CHEN Keke, HUANG Lijuan, WANG Puchang, ZHAO Lili, LIU Fang. Growth and Physiological Responses of Two Species of Paspalum Forage to Low Phosphorus Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1908-1915. |
[3] | LU Lulu, FAN Yiling, DENG Ke, XU Guangzhi, WANG Yan, ZHANG Youzuo, NI Qinxue. Principal Component and Cluster Analysis of Volatile Components in Cape Jasmine Flower From Different Cultivars at Different Stages of Bloom [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1601-1608. |
[4] | ZHOU Hong, ZHANG Jie, ZHANG Wengang, DU Yan, DANG Bin, YANG Xijuan, HAO Jing. Analysis and Evaluation of the Nutritional Quality and Active Components of Qinghai Black Highland Barley [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1609-1618. |
[5] | LIU Jie, WU Guorui, ZHANG Jinwei, SUN Zhouping. Effects of Health-Care Substrate of Chinese Medicine Residue on Bag-Planted Tomatoes’ Yield and Quality in Solar Greenhouse [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1687-1695. |
[6] | DONG Yaru, ZHANG Yanbo, ZHAO Dongxiao, GENG Bing, LOU Qinian, LI Yunzhi, WANG Zhaohong, GUO Guang. Alleviation Effect of Exogenous 24-Epigenolide on Mulberry Seedlings Under NaCl Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1466-1475. |
[7] | SHEN Lingyan, NIU Liying, LIU Chunju, LI Dajing, SONG Jiangfeng, LIU Chunquan. Comparison of Volatile Components in Clear Juice and Kernel of Different Fresh-Edible Waxy Corn Cultivars [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 902-910. |
[8] | LI Yashan, LI Yumeng, REN Yizhao, LIU Xu, WANG Lujun, WANG Jinfeng, CUI Ping, WANG Yanjun. Evaluation of the Introduction Performance of Ten Table Grape Cultivars in Weinan Area of Shaanxi Province [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2756-2765. |
[9] | ZHENG Jianmei, XIAO Yan, GAO Guitian, FENG Qi, LI Zijun. Response Surface Test and Process Optimization of Ethylene Ripening Xuxiang Kiwifruit [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2559-2568. |
[10] | XU Qijie, LIU Lin, LI Mengze, ZHOU Hua, MIN Yanfang, ZHANG Mengda, FU Pengcheng, ZHOU Xuxia. Effects of Ozone Pretreatment Combined With Atmosphere Packaging on Quality Characteristics of Paddy During Storage [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 111-119. |
[11] | LI Jin, LEI Bin, ZHAI Menghua, WANG Li, ZHANG Jungao, ZHOU Xiaoyun, LIANG Jing. Study on the Response Mechanism of the AsA-GSH Cycle in Cotton Seedling Under Low Temperature Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 221-228. |
[12] | ZHANG Hongyan, FANG Rong, CHEN Xuejun, ZHOU Kunhua, YUAN Xinjie, LEI Gang, HUANG Yueqin. Identification of Phenotypic Traits and Verticillium wilt Resistance of Eggplant Germplasms [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1645-1654. |
[13] | LI Hongyu, LI Yi, SI Yang, DU Chunying, ZHOU Xuesong, LIU Menghong, NING Hongyu, YE Piaopiao. Principal Component Analysis and Comprehensive Evaluation of Saline-Alkaline Tolerance Related Traits of Northern Japonica Rice [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1862-1871. |
[14] | ZHANG Li, GONG Yifu, ZHU Shuaiqi, LIU Hao, LI Shenrui, XIE Zhihao, WANG Heyu. Effects of Acetosalicylic Acid on Fucoxanthin Content in Phaeodactylum tricornutum and Its' Molecular Mechanism [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1432-1439. |
[15] | TANG Haiqing, GU Xiaojun, CHEN Zuman, FAN Mengxuan. Taste Identification and Quantitative Analysis of Cooking Wines Based on Electronic Tongue [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 1054-1060. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||