Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (9): 2127-2135.DOI: 10.11869/j.issn.100-8551.2021.09.2127
• Isotope Tracer Technique·Ecology and Environment·Physiology • Previous Articles Next Articles
FANG Yanjie(), ZHANG Xucheng*(
), HOU Huizhi, YU Xianfeng, WANG Hongli, MA Yifan, ZHANG Guoping, LEI Kangning
Received:
2020-10-23
Accepted:
2021-02-08
Online:
2021-09-10
Published:
2021-07-22
Contact:
ZHANG Xucheng
方彦杰(), 张绪成*(
), 侯慧芝, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁
通讯作者:
张绪成
作者简介:
方彦杰,男,副研究员,主要从事旱地农业农作制研究。E-mail: fangyj82@126.com
基金资助:
FANG Yanjie, ZHANG Xucheng, HOU Huizhi, YU Xianfeng, WANG Hongli, MA Yifan, ZHANG Guoping, LEI Kangning. Effects of Tillage and Fertilization on Soil Moisture and Yields of Forage Maize[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2127-2135.
方彦杰, 张绪成, 侯慧芝, 于显枫, 王红丽, 马一凡, 张国平, 雷康宁. 耕作和施肥方式对土壤水分及饲用玉米产量的影响[J]. 核农学报, 2021, 35(9): 2127-2135.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.09.2127
Fig.2 Soil water storage of 0 to 300 cm soil depth at different growth stages Note: Different lowercase letters indicate significant difference at 0.05 level among treatments at the same time. VTO: Vertically rotatry sub-soiling tillage and organic fertilizer. VTC: Vertically rotatry sub-soiling tillage and chemical fertilizer. TO: Traditional rotary tillage and organic fertilizer. TC: Traditional rotary tillage and chemical fertilizer. The same as following.
年份 Year | 处理 Treatment | 花前耗水量 Pre-flowering water consumption /mm | 花后耗水量 Post-flowering water consumption /mm | 总耗水量 Total water consumption /mm |
---|---|---|---|---|
2017 | VTO | 199.2±15.1a | 114.2±6.8b | 313.4±5.4b |
VTC | 204.7±7.4a | 136.2±8.8a | 341.0±6.5a | |
TO | 187.1±17.6b | 101.2±4.8c | 288.2±7.4c | |
TC | 179.9±10.1b | 132.3±5.7a | 312.2±8.1b | |
2018 | VTO | 169.8±11.1a | 225.6±11.7b | 395.4±13.6a |
VTC | 159.5±10.9a | 252.5±12.7a | 412.0±14.8a | |
TO | 119.4±15.1b | 263.6±13.6a | 382.9±15.5a | |
TC | 148.7±10.7a | 232.8±12.5b | 381.5±16.6a | |
2019 | VTO | 159.9±12.3a | 267.2±3.4a | 427.1±5.3a |
VTC | 163.2±13.3a | 274.1±7.0a | 437.3±6.7a | |
TO | 155.8±14.3a | 234.0±5.6b | 389.8±7.4b | |
TC | 129.0±15.3b | 251.5±12.8b | 380.5±8.3b |
Table 1 Soil water consumption in 0 to 300 cm soil depth of forage maize in the pre-flowering and post-flowering periods
年份 Year | 处理 Treatment | 花前耗水量 Pre-flowering water consumption /mm | 花后耗水量 Post-flowering water consumption /mm | 总耗水量 Total water consumption /mm |
---|---|---|---|---|
2017 | VTO | 199.2±15.1a | 114.2±6.8b | 313.4±5.4b |
VTC | 204.7±7.4a | 136.2±8.8a | 341.0±6.5a | |
TO | 187.1±17.6b | 101.2±4.8c | 288.2±7.4c | |
TC | 179.9±10.1b | 132.3±5.7a | 312.2±8.1b | |
2018 | VTO | 169.8±11.1a | 225.6±11.7b | 395.4±13.6a |
VTC | 159.5±10.9a | 252.5±12.7a | 412.0±14.8a | |
TO | 119.4±15.1b | 263.6±13.6a | 382.9±15.5a | |
TC | 148.7±10.7a | 232.8±12.5b | 381.5±16.6a | |
2019 | VTO | 159.9±12.3a | 267.2±3.4a | 427.1±5.3a |
VTC | 163.2±13.3a | 274.1±7.0a | 437.3±6.7a | |
TO | 155.8±14.3a | 234.0±5.6b | 389.8±7.4b | |
TC | 129.0±15.3b | 251.5±12.8b | 380.5±8.3b |
年份 Year | 处理 Treatments | 株高 Plant height /cm | 穗长 Ear length /cm | 穗粗 Ear diameter /mm | 秃顶长 Baldness length/cm | 行粒数 Seed number of row | 百粒重 100-grain weight/g | 双穗率 Double ear rate/% |
---|---|---|---|---|---|---|---|---|
2017 | VTO | 190.5±2.2a | 14.3±0.1a | 32.6±0.3a | 6.8±0.2b | 12.5±0.7a | 29.4±1.2a | 0.0±0.0a |
VTC | 195.0±1.3a | 14.6±0.3a | 33.6±0.1a | 5.4±0.4c | 12.5±0.6a | 29.7±0.8a | 0.0±0.0a | |
TO | 190.5±3.8a | 13.3±0.2b | 30.9±0.2b | 8.4±0.4a | 10.7±0.5b | 29.1±0.4a | 0.0±0.0a | |
TC | 181.0±0.7b | 13.6±0.2b | 33.1±0.8a | 7.2±0.1b | 11.6±0.1b | 28.8±0.2a | 0.0±0.0a | |
2018 | VTO | 314.7±3.7a | 23.9±0.2a | 51.6±0.1ab | 1.3±0.1c | 36.2±1.3a | 55.0±2.8a | 24.3±0.4a |
VTC | 313.5±2.9a | 23.6±0.3a | 56.4±0.4a | 1.6±0.1b | 36.4±2.6a | 55.2±2.1a | 23.5±0.7a | |
TO | 311.8±3.8a | 22.7±1.1b | 49.0±0.2b | 1.7±0.3b | 31.0±2.2b | 51.2±2.3b | 19.3±0.2b | |
TC | 311.2±4.2a | 22.4±0.9b | 54.7±0.3a | 2.4±0.4a | 32.2±0.3b | 51.1±3.2b | 17.4±0.1c | |
2019 | VTO | 308.6±1.8a | 23.8±0.2a | 57.0±0.5a | 4.3±0.7b | 35.0±1.2a | 57.1±1.8a | 55.8±1.1a |
VTC | 304.8±0.9a | 23.8±0.7a | 58.5±0.4a | 3.8±0.4c | 35.0±.0.4a | 54.4±0.3b | 56.5±1.2a | |
TO | 291.1±3.3a | 21.5±0.6b | 54.0±0.6b | 5.0±0.1a | 29.8±0.4b | 54.4±2.5b | 42.7±1.4b | |
TC | 298.0±1.5a | 23.0±0.3a | 57.6±0.2a | 4.4±0.1b | 34.4±0.2a | 53.3±0.5b | 41.0±1.5b |
Table 2 Agronomic and economic characters of forage maize
年份 Year | 处理 Treatments | 株高 Plant height /cm | 穗长 Ear length /cm | 穗粗 Ear diameter /mm | 秃顶长 Baldness length/cm | 行粒数 Seed number of row | 百粒重 100-grain weight/g | 双穗率 Double ear rate/% |
---|---|---|---|---|---|---|---|---|
2017 | VTO | 190.5±2.2a | 14.3±0.1a | 32.6±0.3a | 6.8±0.2b | 12.5±0.7a | 29.4±1.2a | 0.0±0.0a |
VTC | 195.0±1.3a | 14.6±0.3a | 33.6±0.1a | 5.4±0.4c | 12.5±0.6a | 29.7±0.8a | 0.0±0.0a | |
TO | 190.5±3.8a | 13.3±0.2b | 30.9±0.2b | 8.4±0.4a | 10.7±0.5b | 29.1±0.4a | 0.0±0.0a | |
TC | 181.0±0.7b | 13.6±0.2b | 33.1±0.8a | 7.2±0.1b | 11.6±0.1b | 28.8±0.2a | 0.0±0.0a | |
2018 | VTO | 314.7±3.7a | 23.9±0.2a | 51.6±0.1ab | 1.3±0.1c | 36.2±1.3a | 55.0±2.8a | 24.3±0.4a |
VTC | 313.5±2.9a | 23.6±0.3a | 56.4±0.4a | 1.6±0.1b | 36.4±2.6a | 55.2±2.1a | 23.5±0.7a | |
TO | 311.8±3.8a | 22.7±1.1b | 49.0±0.2b | 1.7±0.3b | 31.0±2.2b | 51.2±2.3b | 19.3±0.2b | |
TC | 311.2±4.2a | 22.4±0.9b | 54.7±0.3a | 2.4±0.4a | 32.2±0.3b | 51.1±3.2b | 17.4±0.1c | |
2019 | VTO | 308.6±1.8a | 23.8±0.2a | 57.0±0.5a | 4.3±0.7b | 35.0±1.2a | 57.1±1.8a | 55.8±1.1a |
VTC | 304.8±0.9a | 23.8±0.7a | 58.5±0.4a | 3.8±0.4c | 35.0±.0.4a | 54.4±0.3b | 56.5±1.2a | |
TO | 291.1±3.3a | 21.5±0.6b | 54.0±0.6b | 5.0±0.1a | 29.8±0.4b | 54.4±2.5b | 42.7±1.4b | |
TC | 298.0±1.5a | 23.0±0.3a | 57.6±0.2a | 4.4±0.1b | 34.4±0.2a | 53.3±0.5b | 41.0±1.5b |
相关系数 The correlation coefficient | 株高 Plant height | 穗长 Ear length | 穗粗 Ear diameter | 秃顶长 Baldness length | 行粒数 Seed number of row | 百粒重 100-grain weight | 双穗率 Double ear rate |
---|---|---|---|---|---|---|---|
籽粒产量Grain yield | 0.99** | 0.98** | -0.83** | 0.97** | 0.99** | 0.83** | 0.98** |
生物产量Biomass | 0.99** | 0.99** | 0.95** | -0.89** | 0.99** | 0.97** | 0.75** |
Table 3 Coefficients of pairwise correlations of yield and agronomic and economic characters of forage maize
相关系数 The correlation coefficient | 株高 Plant height | 穗长 Ear length | 穗粗 Ear diameter | 秃顶长 Baldness length | 行粒数 Seed number of row | 百粒重 100-grain weight | 双穗率 Double ear rate |
---|---|---|---|---|---|---|---|
籽粒产量Grain yield | 0.99** | 0.98** | -0.83** | 0.97** | 0.99** | 0.83** | 0.98** |
生物产量Biomass | 0.99** | 0.99** | 0.95** | -0.89** | 0.99** | 0.97** | 0.75** |
[1] | 刘志斋, 宋燕春, 石云素, 蔡一林, 程伟东, 覃兰秋, 黎裕, 王天宇. 中国玉米地方品种的种族划分及其特点研究[J]. 中国农业科学, 2010, 43(5):899-910 |
[2] | 孔晓民, 韩成卫, 曾苏明, 吴秋平, 刘丽. 不同耕作方式对土壤物理性状及玉米产量的影响[J]. 玉米科学, 2014, 22(1):108-113 |
[3] | 方彦杰, 张绪成, 于显枫, 侯慧芝, 王红丽, 马一凡. 立式深旋松耕对半干旱区饲用玉米水分利用和产量的影响[J]. 草业学报, 2020, 29(10):161-171 |
[4] | 宫亮, 安景文, 邢月华, 刘艳, 孙文涛. 连年深松和施用有机肥对土壤肥力及玉米产量的影响[J]. 土壤, 2016, 48(6):1092-1099 |
[5] | 谢军红, 张仁陟, 李玲玲, 罗珠珠, 蔡立群, 柴强. 耕作方法对黄土高原旱作玉米产量和土壤水温特性的影响[J]. 中国生态农业学报, 2015, 23(11):1384-1393 |
[6] | 黄明, 吴金芝, 李友军, 姚宇卿, 张灿军, 蔡典雄, 金轲. 不同耕作方式对旱作区冬小麦生产和产量的影响[J]. 农业工程学报, 2009, 25(1):50-54 |
[7] | 李亮科. 生产要素利用对粮食增产和环境影响研究[D]. 北京: 中国农业大学, 2015 |
[8] | 农业部办公厅. 农业部关于印发《全国农机深松整地作业实施规划(2016—2020年)》的通知[DB/OL]. ( 2016- 02- 05) [2020-10-14]. http://www.moa.gov.cn/nybgb/2016/disanqi/201711/t20171127_5920218.htm |
[9] |
Xie J H, Wang L L, Li L L, Coulter J A, Chai Q, Zhang R Z, Luo Z Z, Carberry P, Rao K P C. Subsoiling increases grain yield, water use efficiency, and economic return of maize under a fully mulched ridge-furrow system in a semiarid environment in China[J]. Soil and Tillage Research, 2020, 199:104584
DOI URL |
[10] | 方彦杰, 张绪成, 于显枫, 侯慧芝, 王红丽, 马一凡, 张国平, 雷康宁. 旱地立式深旋耕方式下有机肥替代对饲用玉米耗水特性和产量的影响[J]. 作物学报, 2020, 46(12):1951-1692 |
[11] |
Zhang X C, Guo J, Ma Y F, Yu X F, Hou H Z, Wang H L, Fang Y J, Tang Y F. Effects of vertical rotary subsoiling with plastic mulching on soil water availability and potato yield on a semiarid Loess plateau, China[J]. Soil and Tillage Research, 2020, 199:104591
DOI URL |
[12] | 张莉, 翟振, 逄博, 李玉义, 王婧, 逄焕成, 韦本辉, 王庆伟, 綦少伟. 深旋松耕改善耕层结构促进马铃薯增产[J]. 中国土壤与肥料, 2017(4):17-23 |
[13] | 张绪成, 马一凡, 于显枫, 侯慧芝, 王红丽, 方彦杰. 立式深旋耕对西北半干旱区土壤水分性状及马铃薯产量的影响[J]. 草业学报, 2018, 27(12):156-165 |
[14] | 苏秦, 贾志宽, 韩清芳, 李永平, 王俊鹏, 杨宝平. 宁南旱区有机培肥对土壤水分和作物生产力影响的研究[J]. 植物营养与肥料学报, 2009, 15(6):1466-1469 |
[15] | 张福锁, 王激清, 张卫峰, 崔振岭, 马文奇, 陈新平, 江荣风. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5):915-924 |
[16] | 王晓娟, 贾志宽, 梁连友, 韩清芳, 杨保平, 丁瑞霞, 崔荣美, 卫婷. 旱地施有机肥对土壤水分和玉米经济效益影响[J]. 农业工程学报, 2012, 28(6):144-149 |
[17] | 李燕青, 赵秉强, 李壮. 有机无机结合施肥制度研究进展[J]. 农学学报, 2017, 7(7):22-30 |
[18] |
Jin S Q, Zhou F. Zero growth of chemical fertilizer and pesticide use: China's objectives, progress and challenges[J]. Journal of Resources and Ecology, 2018, 9(1):50-58
DOI URL |
[19] | 靳亚忠, 陈业雯, 龙闪闪, 李康乐, 马晓伟, 何淑平, 齐红岩. 鸡粪的施用对薄皮甜瓜果实糖积累及糖代谢相关酶活性的影响[J]. 核农学报, 2020, 34(5):1106-1112 |
[20] | 林治安, 赵秉强, 袁亮, Hwat Bing-So. 长期定位施肥对土壤养分与作物产量的影响[J]. 中国农业科学, 2009, 42(8):2809-2819 |
[21] | 周宝元, 孙雪芳, 丁在松. 土壤耕作和施肥方式对夏玉米干物质积累与产量的影响[J]. 中国农业科学, 2017, 50(11):2129-2140 |
[22] | 李娟, 葛磊, 曹婷婷, 徐艳. 有机肥施用量和耕作方式对旱地土壤水分利用效率及作物生产力的影响[J]. 水土保持学报, 2019, 33(2):121-127 |
[23] | 肖继兵, 孙占祥, 杨久廷, 张玉龙, 郑家明, 刘洋. 半干旱区中耕深松对土壤水分和作物产量的影响[J]. 土壤通报, 2011, 42(3):709-714 |
[24] | 韩晓增, 邹文秀, 陆欣春, 段景海. 旱作土壤耕层及其肥力培育途径[J]. 土壤与作物, 2015, 4(4):145-150 |
[25] | 唐小明. 有机肥的保水培肥效果及对冬小麦产量的影响[J]. 水土保持研究, 2003, 10(1):130-132 |
[26] | 陶玥玥, 金梅娟, 汤云龙, 朱兴连, 陆长婴, 王海候, 施林林, 周新伟, 沈明星. 水生植物堆肥替代部分氮肥提高水稻产量与稻田土壤肥力[J]. 农业工程学报, 2017, 33(18):196-202 |
[27] |
Yang Z C, Zhao N, Huang F, Lv Y Z. Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain[J]. Soil and Tillage Research, 2015, 146(10):47-52
DOI URL |
[28] | 巨晓棠, 刘学军, 张福锁. 长期施肥对土壤有机氮组成的影响[J]. 中国农业科学, 2004, 37(1):87-91 |
[29] | 王红丽, 张绪成, 于显枫, 侯慧芝, 方彦杰, 马一凡. 半干旱区氮肥运筹对全膜双垄沟播玉米水肥利用和产量的影响[J]. 应用生态学报, 2020, 31(2):449-458 |
[1] | LIU Lingling, AN Congcong, YE Ximiao, YUAN Jianlong, WANG Yuping, ZHANG Feng. Relationships Among Apical Dominance of Potato Tuber, the Number of Main Stem and Yield Components [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 329-340. |
[2] | BAN Wenhui, WANG Xingqiang, LIU Qiangjuan, SUN Jianbo, LYU Kaiyuan, KANG Jianhong. Effects of Nitrogen Application Rate on Potato Yield, Starch Content and Related Enzyme Metabolic During Tuber Formation After High Temperature Stress [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 422-434. |
[3] | DONG Fei, LI Feng, JIA Yaqin, YANG Feng, YAN Qiuyan, LU Jinxiu, SHEN Yanting. Effect of Nitrogen Topdressing Rate on Yield and Quality of Black-Grained Wheat Varieties (Strains) [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 435-444. |
[4] | LI Yulin, XU Chengyu, HU Xue, ZANG Qian, LU Xuanrui, JIANG Min, ZHUANG Hengyang, HUANG Lifen. Soil Nutrient Characteristics of Organic and Conventional Fertilization Models and Effects on Yields and Qualities of Japonica Rice of Different Palatability Types [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 445-455. |
[5] | LI Junxia, QIN Na, ZHU Cancan, WANG Chunyi, DAI Shutao, SONG Yinghui, CHEN Yuxiang. Study on Photosynthetic Characteristics of Foxtail Millet Mutant With Yellow Leaf Colour [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 1964-1970. |
[6] | WANG Siyang, LI Guanghao, LU Weiping, LU Dalei. Effects of Slow-Release Fertilizer Application Stage on Yield and Quality of Spring-Sown Fresh Waxy Maize [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2136-2144. |
[7] | WEN Hongwei, YANG Bin, WANG Dongsheng. Research Progress on Promoting Growth and Drought Resistance of Wheat by Plant Growth Promoting Rhizobacteria [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2194-2203. |
[8] | TIAN Yixin, GAO Fengju, CAO Pengpeng, GAO Qi, XIA Wenrong. Effect of Sowing Date on Agronomic Characters, Quality and Yield of New High Protein Soybean Varieties (lines) [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1900-1907. |
[9] | LI Tingfeng, LI Wen, GUO Junyu, GU Xin. Effects of Soil Conditioners Combined With Microbial Agent on Soil Nutrient and Citrullus lanatus Growth and Yield in Continuous Cropping Gravel Mulch Field [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1923-1930. |
[10] | LYU Jian, LI Jinwu, YU Jihua, XIE Jianming, FENG Zhi, ZHANG Guobin, LIU Na, WANG Junwen. Effects of Different Surface Covering Methods on Soil Temperature,Yeild and Water Utilization of Loose-Curd Cauliflower (Brassica oleracea var. botrytis L.) [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1941-1951. |
[11] | WU Xi, CAI Xiaolin, GUAN Zhiyong, ZHU Bo, YI Li, ZHENG Yongsheng, DENG Bangqing, JIANG Jiafu. Research of Virus Detection and Elimination of Tea Chrysanthemum [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1548-1556. |
[12] | MENG Wenbo, WANG Desheng, ZHANG Nannan, FEI Hao, TANG Ziya, WANG Tao, BAI Tiecheng. Cotton Growth Simulation and County-Scale Yield Estimation in Response to Climate Change [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1648-1657. |
[13] | SHI Lyu, XUE Yaguang, WEI Yafeng, YANG Meiying, LI Bo, SHI Xiaoxu, LIU Jian. Effects of Rice Straw Non-Uniform Mulch on Soil Characteristics and Wheat Yield Based on Wide-Narrow Row Planting Pattern [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1668-1677. |
[14] | LYU Weisheng, HUANG Tianbao, XIAO Fuliang, ZHENG Wei, XIAO Xiaojun, LI Yazhen, HAN Depeng, XIAO Guobin. Effects of One-Time Side Deep Application of Slow-Released Fertilizer on Yield Formation and Nutrient Utilization of Direct Seeding Rapeseed (Brassica napus L.) in Red-Soil Dryland [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1696-1706. |
[15] | FANG Yanfei, FU Xiaowen, XU Wenxiu, LIU Wen, HUANG Hongmei, ZHANG Na, DU Xiaojing, ZHANG Yongjie. Effects of Annual Nitrogen Application on Winter Wheat-Summer Soybean Rotation Yield and Soil Nitrogen Content [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1178-1187. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||