Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (9): 2065-2074.DOI: 10.11869/j.issn.100-8551.2021.09.2065
• Food Irradiation·Food Science • Previous Articles Next Articles
CHAI Jichuan(), LIU Lu, CHEN Jingdan, WANG Kang, CAO Shifeng, SHI Liyu, YANG Zhenfeng, CHEN Wei*(
)
Received:
2020-05-15
Accepted:
2020-07-14
Online:
2021-09-10
Published:
2021-07-22
Contact:
CHEN Wei
柴吉钏(), 刘璐, 陈景丹, 王康, 曹士锋, 施丽愉, 杨震峰, 陈伟*(
)
通讯作者:
陈伟
作者简介:
柴吉钏,女,主要从事农产品贮藏与加工方面研究。E-mail: 1610904645@qq.com
基金资助:
CHAI Jichuan, LIU Lu, CHEN Jingdan, WANG Kang, CAO Shifeng, SHI Liyu, YANG Zhenfeng, CHEN Wei. Comparative Analysis of Starch Degradation Characteristics of Two Varieties of Kiwifruit After Harvest[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2065-2074.
柴吉钏, 刘璐, 陈景丹, 王康, 曹士锋, 施丽愉, 杨震峰, 陈伟. 两品种猕猴桃果实采后淀粉降解特性比较分析[J]. 核农学报, 2021, 35(9): 2065-2074.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.09.2065
基因名称 Gene name | GDR/NCBI登录号 GDR/NCBI accession No. | 上游引物(5'-3') Forward primer (5'-3') | 下游引物(5'-3') Reverse primer (5'-3') |
---|---|---|---|
AcAMY1 | Achn227481 | GCGAGTTGTGGAGAATGA | TGGATGCTGAAATATAGG |
AcAMY3 | Achn183691 | GGTGGAATCTGAGGAAGTAG | TTCTGTTGGTGGTGGTAAC |
AcBAM1 | Achn090661 | TGGAAGAGATTGACAGAGAC | GAGGACTGGAAGAGTATCAC |
AcBAM3 | Achn32221 | CGGTGACAGAATCCTAGC | TGCCTCGTGTTGTAGTATC |
AcGWD | Achn73781 | ACTTGACGGAGCCTGTT | CAGATTGGACCTTGTAAGATG |
AcPWD | Achn217271 | GCTGCCTCACTTATCTCAT | TCGCCGTTGCTATTATCC |
AcLSF1 | Achn389511 | AAGGCGAGTGAATCATCTG | CAAGGACAAGGTTACAAGGT |
AcISA3 | Achn34891 | TCTACTTCCTTCGCTTCTG | GTCACTGCCACTTGTCTT |
AcLDA1 | Achn118611 | TGAATGGTGAGCCTGAGA | GGATAGGGTCGTGAAGAA |
AcDPE1 | Achn358531 | CTCTTCTGGTTAGTGGTGTT | AAGCCTGCGAATCCTCTA |
AcDPE2 | Achn289521 | TCGTTCTCCGTCAGCAT | GCGTGTTGTGTATTCTTCTT |
AcPHS1 | Achn238811 | ACCGACCTTGACCTACTTA | ATCCGCTTGACCTGAATG |
Actin | Achn107991 | ATGCTATCCTGCGTCTTG | GCGATGTATGCTAACTTCTC |
Table 1 Primers required for the experiment
基因名称 Gene name | GDR/NCBI登录号 GDR/NCBI accession No. | 上游引物(5'-3') Forward primer (5'-3') | 下游引物(5'-3') Reverse primer (5'-3') |
---|---|---|---|
AcAMY1 | Achn227481 | GCGAGTTGTGGAGAATGA | TGGATGCTGAAATATAGG |
AcAMY3 | Achn183691 | GGTGGAATCTGAGGAAGTAG | TTCTGTTGGTGGTGGTAAC |
AcBAM1 | Achn090661 | TGGAAGAGATTGACAGAGAC | GAGGACTGGAAGAGTATCAC |
AcBAM3 | Achn32221 | CGGTGACAGAATCCTAGC | TGCCTCGTGTTGTAGTATC |
AcGWD | Achn73781 | ACTTGACGGAGCCTGTT | CAGATTGGACCTTGTAAGATG |
AcPWD | Achn217271 | GCTGCCTCACTTATCTCAT | TCGCCGTTGCTATTATCC |
AcLSF1 | Achn389511 | AAGGCGAGTGAATCATCTG | CAAGGACAAGGTTACAAGGT |
AcISA3 | Achn34891 | TCTACTTCCTTCGCTTCTG | GTCACTGCCACTTGTCTT |
AcLDA1 | Achn118611 | TGAATGGTGAGCCTGAGA | GGATAGGGTCGTGAAGAA |
AcDPE1 | Achn358531 | CTCTTCTGGTTAGTGGTGTT | AAGCCTGCGAATCCTCTA |
AcDPE2 | Achn289521 | TCGTTCTCCGTCAGCAT | GCGTGTTGTGTATTCTTCTT |
AcPHS1 | Achn238811 | ACCGACCTTGACCTACTTA | ATCCGCTTGACCTGAATG |
Actin | Achn107991 | ATGCTATCCTGCGTCTTG | GCGATGTATGCTAACTTCTC |
Fig.1 Changes of firmness in postharvest kiwifruit during storage Note: *, **, *** mean significant difference at 0.05,0.01 and 0.001 level, respectively. The same as following.
[1] |
Burdon J, Pidakala P, Martin P, McAtee P A, Boldingh H L, Hall A, Schaffer R J. Postharvest performance of the yellow-fleshed Hort16 Akiwifruit in relation to fruit maturation[J]. Postharvest Biology and Technology, 2014, 92:98-106
DOI URL |
[2] |
Ampa K, Ikeura H, Saito T, Okawa K, Ohara H, Kondo S. Effects of pre-harvest application of ethephon or abscisic acid on Kohi kiwifruit (Actinidia chinensis) ripening on the vine[J]. Scientia Horticulturae, 2016, 209:255-260
DOI URL |
[3] | 张安世, 韩臣鹏, 齐秀娟, 张中海. 基于ISSR标记的猕猴桃品种遗传多样性分析及指纹图谱构建[J]. 植物资源与环境学报, 2017, 26(3):19-26 |
[4] | Xu Z C, Hyodo H, Ikoma Y, Yano M, Ogawa K. Relation between ethylene-producing potential and gene expression of 1-aminocyclopropane-1-carboxylic acid synthase in Actinidia chinensis and A. deliciosa fruits[J]. Journal of the Japanese Society for Horticultural Science, 2000, 69(2):192-194 |
[5] |
Asiche W O, Mworia E G, Mitalo O W, Willis O. Extension of shelf-life by limited duration of propylene and 1-MCP treatments in three kiwifruit cultivars[J]. The Horticulture Journal, 2016, 85(1):76-85
DOI URL |
[6] | 胡苗, 李佳颖, 饶景萍. 褪黑素处理对采后猕猴桃果实后熟衰老的影响[J]. 食品科学, 2018, 39(19):226-232 |
[7] |
Nardozza S, Boldingh H L, Osorio S, Höhne M, Wohlers M, Gleave A P, MacRae E A, Richardson A C, Atkinson R G, Sulpice R, Fernie A R, Clearwater M J. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism[J]. Journal of Experimental Botany, 2013, 64(16):5049-5063
DOI PMID |
[8] |
Li D X, Zhu F. Physicochemical properties of kiwifruit starch[J]. Food Chemistry, 2017, 220:129-136
DOI URL |
[9] |
Richardson A C, Marsh K B, Boldingh H L, Pickering A H, Bulley S M, Frearson N J, Ferguson A R, Thornber S E, Bolitho K M, Machae E A. High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit[J]. Plant, Cell and Environment, 2004, 27(4):423-435
DOI URL |
[10] | 王贵禧, 韩雅珊. 猕猴桃软化过程中阶段性专一酶活性变化的研究[J]. 植物学报, 1995, 37(3):198-203 |
[11] |
Kötting O, Kossmann J, Zeeman S C, Lloyd J R. Regulation of starch metabolism: The age of enlightenment?[J]. Current Opinion in Plant Biology, 2010, 13(3):320-328
DOI URL |
[12] |
Streb S, Zeeman S C. Starch metabolism inArabidopsis[J]. The Arabidopsis Book, 2012, 10:e0160
DOI URL |
[13] | 周倩. 基于RNASeq解析非结构性糖代谢途径在小桐子幼苗对干旱胁迫响应与适应中的作用[D]. 昆明: 云南师范大学, 2018: 6-11 |
[14] |
Silver D M, Kötting O, Moorhead G B G. Phosphoglucan phosphatase function sheds light on starch degradation[J]. Trends in Plant Science, 2014, 19(7):471-478
DOI URL PMID |
[15] |
Kötting O, Santelia D, Edner C, Eicke S, Marthaler T, Gentry M S, Comparot-Moss S, Chen J, Smith A M, Steup M, Ritte G, Zeeman S C. STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana[J]. The Plant Cell Online, 2009, 21(1):334-346
DOI URL |
[16] |
Meekins D A, Raththagala M, Husodo S, White C J, Guo H F, Kötting O, Vander Kooi C W, Gentry M S,. Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity[J]. Proceedings of the National Academy of Sciences, 2014, 111(20):7272-7277
DOI URL |
[17] |
Fulton D C, Stettler M, Mettler T, Vaughan C K, Li J, Francisco P, Gil M, Reinhold H, Eicke S, Messerli G, Dorken G, Halliday K, Smith A M, Smith S M, Zeeman S C. β-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active β-amylases inArabidopsis chloroplasts[J]. The Plant Cell, 2008, 20(4):1040-1058
DOI URL |
[18] |
Edner C, Li J, Albrecht T, Mahlow S, Hejazi M, Hussain H, Kaplan F, Guy C, Smith S M, Steup M, Ritte G. Glucan, water dikinase activity stimulates breakdown of starch granules by plastidial β-amylases[J]. Plant Physiology, 2007, 145(1):17-28
DOI URL |
[19] |
Asatsuma S, Sawada C, Itoh K, Okito M, Kitajima A, Mitsui T. Involvement of α-amylase Ⅰ-1 in starch degradation in rice chloroplasts[J]. Plant and Cell Physiology, 2005, 46(6):858-869
PMID |
[20] | 萧允艺. 转录因子MaAP2a-1和MabHLH6调控采后香蕉果实淀粉降解的作用及其机制研究[D]. 广州: 华南农业大学, 2017: 8-10 |
[21] | 聂丹. 多种淀粉颗粒的扫描电镜下的形态分析[J]. 安徽农业科学, 2014, 42(33):11863-11865 |
[22] | 苗红霞, 金志强, 刘伟鑫, 张建平, 孙佩光, 徐碧玉. 香蕉果实抗性淀粉含量变化及其与其他类型淀粉相关性分析[J]. 中国农业科学, 2013, 46(24):5180-5187 |
[23] | 邵佳蓉, 宋春波, 卞坤, 陈伟, 杨震峰. 桃果实PpSIZ1基因对低温和外源褪黑素处理的响应[J]. 园艺学报, 2016, 43(7):1257-1266 |
[24] | 王仁才, 谭兴和, 吕长平, 熊兴耀. 猕猴桃不同品系耐贮性与采后生理生化变化[J]. 湖南农业大学学报, 2000, 26(1):46-49 |
[25] | 谢鸣, 蒋桂华. 猕猴桃采后生理变化及其与耐藏性的关系[J]. 浙江农业学报, 1992, 4(3):124-127 |
[26] |
Manolopoulou H, Papadopoulou P. A study of respiratory and physico-chemical changes of four kiwifruit cultivars during cool-storage[J]. Food Chemistry, 1998, 63(4):529-534
DOI URL |
[27] | 黄文俊, 钟彩虹. 猕猴桃果实采后生理研究进展[J]. 植物科学学报, 2017, 35(4):622-630 |
[28] | 吴彬彬, 饶景萍, 李百云, 赖勤毅, 张海燕. 采收期对猕猴桃果实品质及其耐贮性的影响[J]. 西北植物学报, 2008, 28(4):4788-4792 |
[29] | 黄森, 张继澍, 张院民. 赤霉素处理对采后柿果实乙烯生物合成的影响[J]. 中国农学通报, 2006, 22(2):88-90 |
[30] | Ding P, Tee Y K. Application of exogenous ethylene on postharvest quality of dabai (Canarium odontophyllum Miq.) fruit[J]. African Journal of Agricultural Research, 2010, 5(24):3483-3492 |
[31] | 魏建梅, 齐秀东, 闫芳教. 采后嘎拉苹果果实糖和淀粉代谢及关键酶基因表达特性[J]. 北方园艺, 2015 (19):126-131 |
[32] |
Gao H, Huang S, Dong T, Yang Q S, Yi G J. Analysis of resistant starch degradation in postharvest ripening of two banana cultivars: Focus on starch structure and amylases[J]. Postharvest Biology and Technology, 2016, 119:1-8
DOI URL |
[33] |
Jourda C, Cardi C, Gibert O, Giraldo Toro A, Ricci J, Mbéguié-A-Mbéguié D, Yahiaoui N,. Lineage-specific evolutionary histories and regulation of major starch metabolism genes during banana ripening[J]. Frontiers in Plant Science, 2016, 7:1778
PMID |
[34] | Hu X, Kuang S, Zhang A D, Zhang W S, Chen M J, Yin X R, Chen K S. Characterization of starch degradation related genes in postharvest Kiwifruit[J]. Molecular Sciences, 2016, 17(12):2112 |
[35] |
Alcaraz M L, Hormaza J I, Rodrigo J. Ovary starch reserves and pistil development in avocado (Persea americana)[J]. Physiologia Plantarum, 2010, 140(4):395-404
DOI URL |
[36] | 陈景丹, 许凤, 陈伟, 杨震峰. 猕猴桃果实采后软化期间淀粉降解关键基因表达分析[J]. 核农学报, 2018, 32(2):236-243 |
[37] |
Xiao Y Y, Kuang J F, Qi X N, Ye Y J, Wu Z X, Chen J Y, Lu W J. A comprehensive investigation of starch degradation process and identification of a transcriptional activator MabHLH6 during banana fruit ripening[J]. Plant Biotechnology Journal, 2017, 16(1):151-164
DOI URL |
[38] |
Subasinghe R M, Liu F, Polack U C, Lee E A, Emes M J, Tetlow Ⅰ J. Multimeric states of starch phosphorylase determine protein-protein interactions with starch biosynthetic enzymes in amyloplasts[J]. Plant Physiology and Biochemistry, 2014, 83:168-179
DOI URL PMID |
[1] | XIAO Wenfei, CHAI Weiguo, QIU Jieren, XIN Ya, RUAN Songlin. Proteomic Analysis Reveals Mechanisms of Stropharia rugosoannulata Polysaccharides Promoting Kiwifruit Growth and High Temperature Resistance [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 94-104. |
[2] | LIU Zhenrong, ZHAO Wuqi, LU Dan, LU Yan, GAO Guitian, MENG Yonghong. Quality Petection of Hayward Kiwifruit Based on the Dielectric Properties [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1367-1375. |
[3] | XU Wenya, ZHU Yuyan, XU Qihang, LI Sheng'e, SHEN Shuling, YAO Lanying, ZHENG Xiaolin. Eeffect of Umbelliferone Treatment on Disease Resistance to Botrytis cinerea in Kiwifruit cv. Xuxiang During Storage [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 846-853. |
[4] | YE Qing, ZHAO Wuqi, BAI Sike, ZHANG Jiying, NIE Congyi, QIAN Rui, WU Xiaoya. Study on the Sterilization Effect and Quality of Cloudy Kiwifruit Juice Treated by Thermalassisted Ultrasonic [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2776-2786. |
[5] | ZHENG Jianmei, XIAO Yan, GAO Guitian, FENG Qi, LI Zijun. Response Surface Test and Process Optimization of Ethylene Ripening Xuxiang Kiwifruit [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2559-2568. |
[6] | YANG Xiulan, SHI Qiyu, PENG Junsen, LIU Qinchao, HUANG Shi'an, XU Xingliang, ZHU Shouliang, DONG Xiaoqing. Inhibitory Effects and Mechanism of Grape Seed Extract Treatment on Penicilliosis of Postharvest Kiwifruit [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2319-2327. |
[7] | YE Qing, ZHAO Wuqi, TIAN Yanmei, YUAN Jixin, YAN Lin, ZHANG Haoyang. Optimization of Microwave Treatment for Fresh Kiwifruit Slices Using Response Surface Methodology [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 175-182. |
[8] | SUN Qiang, ZHANG Xin, GAO Guitian. Establishment of Prediction Model of Hayward Kiwifruit Shelf-Life [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1729-1736. |
[9] | TAO Shuhua, CHEN Li, JIANG Zhenye, SONG Qianqian, SONG Yichao, JIANG Tianjia, ZHENG Xiaolin. Effects of Lower Temperature on Flavor Components and Fatty Acid Pathway in Harvested Kiwifruit (Actinidia deliciosa. cv. Bruno) [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(2): 288-297. |
[10] | SHI Hao, WANG Rencai, WANG Fangfang, WANG Yan, BU Fanwen, ZHOU Qian. Isolation, Identification and Growth Characteristics of Main Pathogens of Kiwifruit Soft Rot [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2425-2434. |
[11] | LIU Xue, ZENG Xiangyuan, ZHANG Yuan, LUO Rong, GAO Ruoxi, ZHAO Wuqi. Effects of Constant and Alternating Temperatures Air Impingement Drying on the Drying Characteristics and Quality of Kiwifruit Slices [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2470-2476. |
[12] | ZHU Tingting, CHEN Jingdan, FANG Xiaoqin, LIU Lu, QIN Juan, CHEN Wei, YANG Zhenfeng, SHI Liyu. Effects of Low Temperature Storage on the Expression of Genes Involved in Maturation and Softening of Kiwifruit Fruits [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2199-2208. |
[13] | DU Yinglin, XU Yafen, GAO Guitian, CAO Fan, LI Chaozheng, ZHANG Xin. Effects of Different Treatment on the Expression of Genes Involved in Endogenous Abscisic Acid in Hayward Kiwifruit [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(4): 664-670. |
[14] | ZHANG Cheng, WANG Qiuping, WU Xiaomao, LONG Youhua, WU Yanyou, HUANG Yaxin, TANG Jingwen. Effects of Forchlorfenuron on Amino Acids and Aroma Components of Guichang Kiwifruit Postharvests [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(11): 2186-2194. |
[15] | CAO Fan, GAO Guitian, WANG Duo, LEI Yushan, ZHAO Wuqi. Sterilization of Chlorine Dioxide on Pseudomonas syringae pv.actinidiae of Kiwifruit Surface Sterilization and Its Effect on the Shelf Life of Fruits [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(1): 88-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||