Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (9): 2044-2055.DOI: 10.11869/j.issn.100-8551.2021.09.2044
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
FENG Yalan1(), YIN Fei1, XU Ke2, JIA Xiaoyi2, ZHOU Shuang1, MA Chao1,*(
)
Received:
2020-06-15
Accepted:
2020-08-21
Online:
2021-09-10
Published:
2021-07-22
Contact:
MA Chao
冯雅岚1(), 尹飞1, 徐柯2, 贾晓艺2, 周爽1, 马超1,*(
)
通讯作者:
马超
作者简介:
冯雅岚,女,讲师,主要从事作物分子生物学研究。E-mail: fengyalan2004@163.com
基金资助:
FENG Yalan, YIN Fei, XU Ke, JIA Xiaoyi, ZHOU Shuang, MA Chao. Role of Sucrose Metabolism and Signal Transduction in Plant Development and Stress Response[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2044-2055.
冯雅岚, 尹飞, 徐柯, 贾晓艺, 周爽, 马超. 蔗糖代谢及信号转导在植物发育和逆境响应中的作用[J]. 核农学报, 2021, 35(9): 2044-2055.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.09.2044
Fig.1 Sucrose synthesis, transportation and metabolism[24] Note:ADP-Glc:Adenosine diphosphate-glucose. CO2:Carbon dioxide. CIN:Cytoplasmic invertase. CWIN:Cell wall invertase. Fru:Fructose. Fru-6-P:Fructose-6-phosphate. Glc:Glucose. HEX:Hexose. PD:Plasmodesmata. RGS:Regulator of G-protein signaling. SE/CC:Sieve element/companion cell complex. SPP:Sucrose phosphate phosphatase. SPS:Sucrose phosphate synthase. Suc:2ucrose. Suc-P:Sucrose phosphate. Sus: Sucrose synthase. Triose-P:Triose-phosphate. UDP-Glc:Uridine diphosphate-glucose. VIN:Vacuolar invertase.
Fig.2 Phylogenetic tree of invertase protein sequences Note:CIN:Cytoplasmic invertase. CWIN:Cell wall invertase. VIN:Vacuolar invertase. At:Arabidopsis thaliana. Dc:Daucus carota. Lj:Lotus japonicus. Os:Oryza sativa. Sl:Solanum lycopersicum. Vf:Vicia faba. Zm:Zea mays. Sc:Saccharomyces cerevisiae. The phylogenetic tree is constructed via MEGA5.05 (http://www.mega-software.net/) and the bootstrap value is set to 1000. * indicates the subtype required for normal development. The same as following.
Fig.3 Phylogenetic tree of sucrose synthase protein sequences Note:At:Arabidopsis thaliana. Dc:Daucus carota. Gh: Gossypium herbaceum. Os:Oryza sativa. Sl:Solanum lycopersicum. St: Solanum tuberosum. Ta: Triticum aestivum. Vf:Vicia faba. Zm:Zea mays.
Fig.4 Reproductive failure caused by blocked sucrose metabolism and signal transduction under abiotic stress[25] Note:↑:Promote. ⊥:Inhibit. ↓:Activity/content reduction. ABA:Abscisic acid. ATP:Adenosine triphosphate. Fru:Fructose. Glc:Glucose. HXK:Hexokinase. INV:Invertase. PCD:Programmed cell death. ROS:Reactive oxygen species. SnRK1:Sucrose non-fermentingrelated kinase 1. Suc:Sucrose. Sus:Sucrose synthase. UDP-Glc:Uridine diphosphate- glucose.
Fig.5 Signal transduction pathway of sucrose metabolism in plant development[25] Note:→:Promote. ⊥:Inhibit. F6P:Fructose-6-phosphate. Fru:Fructose. G6P:Glucose-6-phosphate. IAA:Indole-3-acetic acid. INV:Invertase. ROS:Reactive oxygen species. RGS:Regulator of G-protein signaling. SnRK1:Sucrose non-fermentingrelated kinase 1. ABA:Abscisic acid. SPL:Squamosa promoter binding protein-like. SPP:Sucrose phosphate phosphatase. SPS:Sucrose phosphate synthase. Suc:Sucrose. Sus:Sucrose synthase. T6P:Trehalose-6-phosphate. TOR:Target of rapamycin. TPS:Trehalose-6-phosphate synthase.
[1] | 邓舒雅. 无籽蜜柚糖累积及组分转化相关基因的鉴定及其在发育过程中的调控机制[D]. 海口: 海南大学, 2019 |
[2] |
Ruan Y L, Patrick J W, Bouzayen M, Osorio S, Fernie A R. Molecular regulation of seed and fruit set[J]. Trends in Plant Science, 2012, 17(11):656-665
DOI URL |
[3] |
O'Hara L E, Paul M J, Wingler A. How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate[J]. Molecular Plant, 2013, 6(2):261-274
DOI URL PMID |
[4] |
Boyer J S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat[J]. Molecular Plant, 2010, 3(6):942-955
DOI URL |
[5] |
Xiang L, Roy K L, Bolouri-Moghaddam M R, Vanhaecke M, Lammens W, Rolland F, Ende W V. Exploring the neutral invertase-oxidative stress defence connection in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2011, 62(11):3849-3862
DOI URL PMID |
[6] | O'Hara I M. The Sugarcane Industry, Biofuel, and Bioproduct Perspectives[M]. Hoboken: John Wiley & Sons, Inc, 2016 |
[7] | 刘炳清, 许嘉阳, 黄化刚, 杨永霞, 杨双剑, 连培康, 许自成. 不同海拔下烤烟碳氮代谢相关酶基因的表达差异分析[J]. 植物生理学报, 2015, 51(2):183-188 |
[8] |
Albi T, Ruiz M T, Reyes P, Valverde F, Romero J M. Characterization of the sucrose phosphate phosphatase (SPP) isoforms from Arabidopsis thaliana and role of the S6PPc domain in dimerization[J]. PLoS One, 2016, 11(11):e0166308
DOI URL |
[9] | Huber S C, Huber J L. Role and regulation of sucrose phosphate synthase in higher plants[J]. Annual Review of Plant Biology, 1996, 47:431-444 |
[10] |
Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, Pourtau N. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots[J]. Plant Physiology, 2016, 170(3):1460-1470
DOI URL |
[11] |
Maloney V J, Ji-Young P, Faride U, Mansfield S D. Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation[J]. Journal of Experimental Botany, 2015, 66(14):4383-4394
DOI URL |
[12] |
Seger M, Gebril S, Tabilona J, Peel A, Sengupta-Gopalan C. Impact of concurrent overexpression of cytosolic glutamine synthetase (GS1) and sucrose phosphate synthase (SPS) on growth and development in transgenic tobacco[J]. Planta, 2015, 241(1):69-81
DOI PMID |
[13] |
Foyer C H, Ferrario S. Modulation of carbon and nitrogen metabolism in transgenic plants with a view to improved biomass production[J]. Biochemical Society Transactions, 1994, 22(4):909-915
PMID |
[14] |
Ishimaru K, Hirotsu N, Kashiwagi T, Madoka Y, Nagasuga K, Ono K, Ohsugi R. Overexpression of a maize (Zea mays) SPS gene improves yield characters of potato (Solanum tuberosum) under field conditions[J]. Plant Production Science, 2008, 11(1):104-107
DOI URL |
[15] |
Li X, Du J, Guo J J, Wang H Y, Ma S, Lyu J G, Sui X L, Zhang Z X. The functions of cucumber sucrose phosphate synthases 4 (CsSPS4) in carbon metabolism and transport in sucrose- and stachyose-transporting plants[J]. Journal of Plant Physiology, 2018, 228:150-157
DOI URL |
[16] | 叶红霞, 吕律, 王同林, 海睿, 汪炳良. 不同变种甜瓜糖分积累及蔗糖代谢酶活性动态变化[J]. 核农学报, 2019, 33(10):1959-1966 |
[17] | Abid M, Tian Z, Hu J, Ullah A, Dai T. Activities of carbohydrate-metabolism enzymes in pre-drought primed wheat plants under drought stress during grain filling: Carbohydrate metabolism in drought primed wheat plants[J]. Journal of Integrative Plant Biology, 2017, 46(4):783-795 |
[18] |
Lunn J E. Sucrose-phosphatase gene families in plants[J]. Gene, 2003, 303(1):187-196
DOI URL |
[19] |
Chen S, Hajirezaei M R, Peisker M, Tschiersch H, Sonnewald U, Brnke F. Decreased sucrose-6-phosphate phosphatase level in transgenic tobacco inhibits photosynjournal, alters carbohydrate partitioning, and reduces growth[J]. Planta, 2005, 221(4):479-492
DOI URL |
[20] | Chen S, Hajirezaei M R, Zanor M I, Hornyik C, Debast S, Lacomme C, Fernie A R, Sonnewald U, Börnke F. RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation[J]. Plant Cell and Environment, 2007, 31(1):165-176 |
[21] |
Cheng W H, Chourey P S. Genetic evidence that invertase-mediated release of hexoses is critical for appropriate carbon partitioning and normal seed development in maize[J]. Theoretical and Applied Genetics, 1999, 98(3/4):485-495
DOI URL |
[22] | Bansal R. Cell wall invertase and sucrose synthase regulate sugar metabolism during seed development in isabgol (Plantago ovata Forsk.)[J]. Proceedings of the National Academy of Sciences India, 2018, 88(1):73-78 |
[23] |
Hoermiller I I, Naegele T, Augustin H, Stutz S, Heyer A G. Subcellular reprogramming of metabolism during cold acclimation in Arabidopsis thaliana[J]. Plant Cell and Environment, 2016, 40(5):602-610
DOI URL |
[24] |
Ruan Y L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65(1):33-67
DOI URL |
[25] |
Wan H J, Wu L M, Yang Y J, Zhou G Z, Ruan Y L. Evolution of sucrose metabolism: The dichotomy of invertases and beyond[J]. Trends in Plant Science, 2017, 23(2):163-177
DOI URL |
[26] |
Bledsoe S W, Henry C, Griffiths C A, Paul M J, Feil R, Lunn J E, Stitt M, Lagrimini L M. The role of Tre6P and SnRK1 in maize early\nkernel development and events leading to stress-induced kernel abortion[J]. BMC Plant Biology, 2017, 17(1):74
DOI PMID |
[27] |
Wang E T, Wang J J, Zhu X D, Hao W, Wang L Y, Li Q, Zhang L X, He W, Lu B R, Lin H X. Control of rice grain-filling and yield by a gene with a potential signature of domestication[J]. Nature Genetics, 2008, 40(11):1370-1374
DOI URL |
[28] |
Zanor M Ⅰ, Osorio S, Nunes-Nesi A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility[J]. Plant Physiology, 2009, 150(3):1204-1218
DOI URL |
[29] |
Shen S, Ma S, Liu Y H, Liao S J, Ruan Y L. Cell wall invertase and sugar transporters are differentially activated in tomato styles and ovaries during pollination and fertilization[J]. Frontiers in Plant Science, 2019, 10:506
DOI PMID |
[30] |
Heyer A G, Raap M, Schroeer B, Marty B, Willmitzer L. Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana[J]. Plant Journal, 2004, 39(2):161-169
PMID |
[31] |
Sergeeva L Ⅰ, Keurentjes J J B, Bentsink L, Vonk J, Plas L H W, Koornneef M, Vreugdenhil D. Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis[J]. Proceedings of the National Academy of Sciences, 2006, 103(8):2994-2999
DOI URL |
[32] |
Wang L, Li X R, Lian H, Ni D A, He Y k, Chen X Y, Ruan Y L. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively[J]. Plant Physiology, 2010, 154(2):744-756
DOI PMID |
[33] | Toledo L E T, García D M, Cruz E P, Intriago L M R, Pérez J N, Chanfrau J M P. Fructosyltransferases and Invertases: Useful Enzymes in the Food and Feed Industries[M]. London: Academic Press, 2019 |
[34] | Dong S Y, Beckles D M. Dynamic changes in the starch-sugar interconversion within plant source and sink tissues promote a better abiotic stress response[J]. Journal of Plant Physiology, 2019, 234- 235:80-93 |
[35] |
Qin G Z, Zhu Z, Wang W H, Cai J H, Chen Y, Li L, Tian S P. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening[J]. Plant Physiology, 2016, 172(3):1596-1611
DOI URL |
[36] |
Estornell L H, Pons C, Martínez A, O’Connor J E, Orzaez D, Granell A. A VIN1 GUS:GFP fusion reveals activated sucrose metabolism programming occurring in interspersed cells during tomato fruit ripening[J]. Journal of Plant Physiology, 2013, 170(12):1113-1121
DOI PMID |
[37] | 阮美颖, 万红建, 杨有新, 周国治, 王荣青, 叶青静, 姚祝平, 杨悦俭, 程远, 李志邈. 辣椒细胞质雄性不育系和保持系蔗糖转化酶活性与相关基因表达分析[J]. 农业生物技术学报, 2018, 26(12):2036-2046 |
[38] |
Xu Z R, Cai S W, Huang W X, Liu R X, Xiong Z T. Differential expression of vacuolar and defective cell wall invertase genes in roots and seeds of metalliferous and non-metalliferous populations ofRumex dentatus under copper stress[J]. Ecotoxicology and Environmental Safety, 2018, 147:17-25
DOI URL |
[39] |
Barratt D H P, Derbyshire P, Findlay K, Pike M, Wellner N, Lunn J, Feil R, Simpson C, Maule A J, Smith A M. Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase[J]. Proceedings of the National Academy of Sciences, 2009, 106(31):13124-13129
DOI URL |
[40] |
Jia L Q, Zhang B T, Mao C Z, Li J H, Wu Y R, Wu P, Wu Z C. OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.)[J]. Planta, 2008, 228(1):51-59
DOI URL |
[41] |
Welham T, Pike J, Horst Ⅰ, Flemetakis E, Katinakis P, Kaneko T, Sato S, Tabata S, Perry J, Parniske M, Wang T L. A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus[J]. Journal of Experimental Botany, 2009, 60(12):3353-3365
DOI URL |
[42] |
Handa M H. Genes for alkaline/neutral invertase in rice: Alkaline/neutral invertases are located in plant mitochondria and also in plastids[J]. Planta, 2007, 225(5):1193-1203
DOI URL |
[43] |
Ji X M, Ende W V D, Laere A V, Cheng S H, Bennett J. Structure, evolution, and expression of the two invertase gene families of rice[J]. Journal of Molecular Evolution, 2005, 60(5):615-634
DOI URL |
[44] |
Wang L, Ruan Y L. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns ofGhCWIN1 in cotton[J]. Plant Physiology, 2013, 160(1):777-787
DOI URL |
[45] |
Xu S M, Brill E, Llewellyn D J, Furbank R T, Ruan Y L. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production[J]. Molecular Plant, 2012, 5(2):430-441
DOI URL |
[46] |
Yao D, Gonzales-Vigil E, Mansfield S D. Arabidopsis sucrose synthase localization indicates a primary role in sucrose translocation in phloem[J]. Journal of Experimental Botany, 2020, 71(6):1858-1869
DOI URL |
[47] |
Shu X M, Livingston D P, Franks R G, Boston R S, Woloshuk C P, Payne G A. Tissue-specific gene expression in maize seeds during colonization by A spergillus flavus and Fusarium verticillioides[J]. Molecular Plant Pathology, 2015, 16(7):662-674
DOI URL |
[48] | Slugina M A, Boris K V, Kakimzhanova A A, Kochieva E Z. Intraspecific polymorphism of the sucrose synthase genes in Russian and Kazakhstan potato cultivars[J]. Genetika, 2015, 50(6):677-682 |
[49] |
Mukhtar A, Ali S A, Sidra A, Ayesha L, Ud D S, Ma F, Rao A Q, Bilal S M, Tayyab H, Wang X. Sucrose synthase genes: A way forward for cotton fiber improvement[J]. Biologia, 2018, 73(7):703-713
DOI URL |
[50] |
Ruan Y L, Llewellyn D J, Liu Q, Xu S M, Wu L M, Wang L, Furbank R T. Expression of sucrose synthase in the developing endosperm is essential for early seed development in cotton[J]. Functional Plant Biology, 2008, 35(5):382-393
DOI URL |
[51] |
Wei Z G, Qu Z S, Zhang L J, Zhao S J, Bi Z H, Ji X H, Wang X W, Wei H R. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height[J]. PLoS One, 2015, 10(3):e0120669
DOI URL |
[52] | Sadat M S, Kourosh M, Ji K S. Characterization of cellulose synjournal in plant cells[J]. The Scientific World Journal, 2016, 2016:1-8 |
[53] |
Weber H, Borisjuk L, Wobus U. Controlling seed development and seed size in Vicia faba: A role for seed coat-associated invertases and carbohydrate state[J]. Plant Journal, 1996, 10(5):823-834
DOI URL |
[54] | Anh N Q, Sheng L, Wi S G, Bae H, Lee D S, Bae H J. Pronounced phenotypic changes in transgenic tobacco plants overexpressing sucrose synthase may reveal a novel sugar signaling pathway[J]. Frontiers in Plant Science, 2016, 6:1216 |
[55] |
Kumar A, Singh H P, Batish D R, Kaur S. EMF radiations (1800 MHz)-inhibited early seedling growth of maize (Zea mays) involves alterations in starch and sucrose metabolism[J]. Protoplasma, 2016, 253:1043-1049
DOI URL |
[56] | Batth R, Singh K, Kumari S, Mustafiz A. Transcript profiling reveals the presence of abiotic stress and developmental stage specific ascorbate oxidase genes in plants[J]. Frontiers in Plant Science, 2017, 8:198 |
[57] |
Poór P, Patyi G, Takács Z, Szekeres A, Bódi N, Bagyánszki M, Tari Ⅰ. Salicylic acid-induced ROS production by mitochondrial electron transport chain depends on the activity of mitochondrial hexokinases in tomato (Solanum lycopersicum L.)[J]. Journal of Plant Research, 2019, 132(2):273-283
DOI URL |
[58] | Oury V, Caldeira C F, Prodhomme D, Pichon J P, Gibon Y, Tardieu F, Turc O. Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering?[J]. Plant Physiology, 2016, 171(2):997-1008 |
[59] |
Islam M R, Feng B, Chen T, Fu W, Fu G. Abscisic acid prevents pollen abortion under high temperature stress by mediating sugar metabolism in rice spikelets[J]. Physiologia Plantarum, 2019, 165(3):644-663
DOI URL |
[60] |
Tanotra S, Zhawar V K, Sharma S. Regulation of antioxidant enzymes and invertases by hydrogen peroxide and nitric oxide under aba and water-deficit stress in wheat[J]. Agricultural Research, 2019, 8:441-451
DOI URL |
[61] |
Nunes C, O'Hara L E, Primavesi L F, Delatte T L, Schluepmann H, Somsen G W, Silva A B, Fevereiro P S, Wingler A, Paul M J. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation[J]. Plant Physiology, 2013, 162(3):1720-1732
DOI URL |
[62] | Khalid M, Khalid Z, Gul A, Amir R, Ahmad Z. Characterization of wheat cell wall invertase genes associated with drought tolerance in synthetic-derived wheat[J]. International Journal of Agriculture and Biology, 2018, 20(12):2677-2684 |
[63] | Lee S K, Kim H, Cho J I, Nguyen C D, Jeon J S. Deficiency of rice hexokinase HXK5 impairs synjournal and utilization of starch in pollen grains and causes male sterility[J]. Journal of Experimental Botany, 2019, 71(1):10 |
[64] | 丁梦秋, 闻诗文, 陆卫平, 陆大雷. 结实期弱光胁迫对甜玉米籽粒灌浆和叶片衰老的影响[J]. 核农学报, 2017, 31(5):964-971 |
[65] | 戴忠民, 张秀玲, 张红, 李勇, 王振林. 不同灌溉模式对小麦籽粒蛋白质及其组分含量的影响[J]. 核农学报, 2015, 29(9):1797-1798 |
[66] | 王凤, 廖乐, 华淼源, 余泽新, 林立昊, 惠宏杉, 郑许光, 齐军仓. 人工老化处理对啤酒大麦籽粒淀粉酶和麦芽品质的影响[J]. 核农学报, 2017, 31(2):288-297 |
[67] |
Kiran A, Kumar S, Nayyar H, Sharma K D. Low temperature induced aberrations in male and female reproductive organ development cause flower abortion in Chickpea[J]. Plant Cell and Environment, 2019, 42(7):2075-2089
DOI |
[68] |
Ido G, Guadalupe D P, Zvia K, Doron S I, Fernando C, Dudy B Z, Sara A. Tomato abscisic acid stress ripening (ASR) gene family revisited[J]. PLoS One, 2014, 9(10):e107117
DOI URL |
[69] |
Sun P G, Miao H X, Yu X M, Jia C H, Liu J H, Zhang J B, Wang J Y, Zhuo W, Wang A B, Xu B Y, Jin Z Q. A novel role for banana MaASR in the regulation of fowering time in transgenic Arabidopsis[J]. PLoS One, 2016, 11(8):e0160690
DOI URL |
[70] |
Liang Y N, Jiang Y L, Du M, Li B Y, Wu J D. ZmASR3 from the maize ASR gene family positively regulates drought tolerance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences, 2019, 20(9):2278
DOI URL |
[71] |
Zhang J, Zhu Q S, Yu H J, Li L, Zhang G Q. Comprehensive analysis of the cadmium tolerance of abscisic acid, stress and ripening induced proteins (ASRs) in maize[J]. International Journal of Molecular Sciences, 2019, 20(1):133
DOI URL |
[72] |
Li X Y, Li L J, Zuo S Y, Li J, Wei S. Differentially expressed ZmASR genes associated with chilling tolerance in maize (Zea mays) varieties[J]. Functional Plant Biology, 2018, 45(12):1173
DOI URL |
[73] |
Chen J Y, Liu D J, Jiang Y M, Zhao M L, Shan W, Kuang J F, Lu W J. Molecular characterization of a strawberry FaASR gene in relation to fruit ripening[J]. PLoS One, 2011, 6:e24649
DOI URL |
[74] |
Wei J X, Hu F, Jiang W B, Chen H M. Functional analysis of abscisic acid-stress ripening transcription factor in Prunus persica f. atropurpurea[J]. Journal of Plant Growth Regulation, 2018, 37:85-100
DOI URL |
[75] |
Liang J, He J X. Protective role of anthocyanins in plants under low nitrogen stress[J]. Biochemical and Biophysical Research Communications, 2018, 498(4):946-953
DOI PMID |
[76] |
Afzal M, Redha A, AlHasan R. Anthocyanins potentially contribute to defense against alzheimer's disease[J]. Molecules, 2019, 24(23):4255
DOI URL |
[77] |
Ma Z H, Li W F, Mao J, Li W, Zuo C W, Zhao X, Dawuda M M, Shi X Y, Chen B H. Synjournal of light-inducible and light-independent anthocyanins regulated by specific genes in grape 'Marselan' (V. vinifera L.)[J]. Peer J, 2019, 7:e6521
DOI URL |
[78] |
Federica G, Chiara P, Ilaria F, Lorenzo L, Nicola B, Diego T. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis vinifera L.)[J]. Scientific Reports, 2018, 8(1):8719
DOI PMID |
[79] |
Meng L S, Xu M K, Wan W, Yu F, Li C, Wang J Y, Wei Z Q, Lv M J, Cao X Y, Li Z Y, Jiang J H. Sucrose signaling regulates anthocyanin biosynjournal through a MAPK cascade in Arabidopsis thaliana[J]. Genetics, 2018, 210(2):607
DOI URL |
[80] |
Koch K E. Carbohydrate-modulated gene expression in plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47(1):509-540
DOI URL |
[81] |
Zheng T, Tan W R, Yang H, Zhang L E, Li T T, Liu B H, Zhang D W, Lin H H, Qu L J. Regulation of anthocyanin accumulation via MYB75/HAT1/TPL-mediated transcriptional repression[J]. Plos Genetics, 2019, 15(3):e1007993
DOI URL |
[82] |
Ai T N, Naing A H, Arun M, Lim S H, Kim C K. Sucrose-induced anthocyanin accumulation in vegetative tissue of Petunia plants requires anthocyanin regulatory transcription factors[J]. Plant Science, 2016, 252:144-150
DOI URL |
[83] |
Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant Physiology, 2006, 140(2):637-646
PMID |
[84] |
Shor E, Potavskaya R, Kurtz A, Paik Ⅰ, Huq E, Green R. PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent[J]. Genes, 2018, 9(12):628
DOI URL |
[85] |
Wei Z Y, Yuan T, Tarkowská D, Kim J, Nam H G, Novák O, He K, Gou X P, Li J. Brassinosteroid biosynjournal is modulated via a transcription factor cascade of COG1, PIF4 and PIF5[J]. Plant Physiology, 2017, 174(2):1260-1273
DOI URL |
[86] |
Shor E, Paik Ⅰ, Kangisser S, Green R, Huq E. PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis[J]. New Phytologist, 2017, 215(1):217-228
DOI URL |
[87] |
Cho L H, Pasriga R, Yoon J, Jeon J S, An G. Roles of sugars in controlling flowering time[J]. Journal of Plant Biology, 2018, 61(3):121-130
DOI URL |
[88] | 陈清帅. 拟南芥糖信号快速响应的机理研究[D]. 泰安: 山东农业大学, 2019 |
[89] |
Xu M L, Hu T Q, Zhao J F, Mee-Yeon P, Earley K W, Gang W, Li Y, Scott P R, Miltos T. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(8):e1006263
DOI URL |
[90] |
Yin H B, Hong G J, Li L Y, Zhang X Y, Kong Y Z, Sun Z T, Li J M, Chen J P, He Y Q. miR156/SPL9 regulates reactive oxygen species accumulation and immune response in Arabidopsis thaliana[J]. Phytopathology, 2019, 109(4):632-642
DOI URL |
[91] |
Wahl V, Ponnu J, Schereth A, Arrivault S, Langenecker T, Fronke A, Feil R, Lunn J G, Stitt M, Schmid M. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science, 2013, 339(6120):704-707
DOI URL |
[92] |
Jamsheer M K, Sharma M, Singh D, Mannully C T, Laxmi A. FCS-like zinc finger 6 and 10 repress SnRK1 signalling in Arabidopsis[J]. Plant Journal for Cell and Molecular Biology, 2018, 94(2):232-245
DOI URL |
[93] |
Kelly C, Michael T, A O H, Nijat Ⅰ, A D M. CEP-CEPR1 signalling inhibits the sucrose-dependent enhancement of lateral root growth[J]. Journal of Experimental Botany, 2019, 70(15):3955-3967
DOI URL |
[94] | Durand M, Mainson D, Porcheron B, Maurousset L, Lemoine R, Pourtau N. Carbon source-sink relationship in Arabidopsis thaliana: the role of sucrose transporters[J]. Planta an International Journal of Plant Biology, 2018, 247(3):587-611 |
[95] | Deryabin A N, Trunova Т Ⅰ. The physiological and biochemical mechanisms providing the increased constitutive cold resistance in the potato plants, expressing the yeast SUC2 gene encoding apoplastic invertase[J]. Journal of Stress Physiology and Biochemistry, 2016, 12(2):39 |
[96] |
Bi Y J, Sun Z C, Zhang J, Liu E Q, Shen H M, Lai K L, Zhang S, Guo X T, Sheng Y T, Yu C Y, Qiao X Q, Li B, Zhang H X. Manipulating the expression of a cell wall invertase gene increases grain yield in maize[J]. Plant Growth Regulation, 2018, 84:37-43
DOI URL |
[97] |
Guo X T, Duan X G, Wu Y Z, Cheng J S, Zhang J, Zhang H X, Li B. Genetic engineering of maize (Zea mays L.) with improved grain nutrients[J]. Journal of Agricultural and Food Chemistry, 2018, 66(7):1670-1677
DOI URL |
[98] |
Morey S R, Hirose T, Hashida Y, Miyao A, Hirochika H, Ohsugi R, Yamagishi J, Aoki N. Characterisation of a rice vacuolar invertase isoform, OsINV2, for growth and yield-related traits[J]. Functional Plant Biology, 2019, 46:777-785
DOI URL |
[1] | BIAN Nengfei, TONG Fei, GONG Jiali, SUN Donglei, SHEN Yi, WANG Xing, XING Xinghua, WANG Xiaojun. Establishment of Near Infrared Spectroscopy Model for Predicting Sucrose Content of Peanut Seed and Application in Mutants Selection [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 251-258. |
[2] | YIN Mengyao, CHEN Gong, LUO Haihua, PENG Jinjian, GAO Xin, YUAN Changkai, TANG Feiyu. Effects of External IAA Application on Sucrose Metabolism With Cotton Bolls and Within-Boll Yield Components [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1931-1940. |
[3] | DU Qiaoli, FANG Yuanpeng, JIANG Junmei, SUN Tao, REN Mingjian, XIE Xin. Identification of Sorghum Non-Expressor of Pathogenesis Related Genes 1 Gene Family and Analysis of Their Expression Under Different Stresses [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1074-1083. |
[4] | ZHAO Qi, GUO Yunhong, YANG Yuzhen, CHEN Lipei, LUO Qing. Alleviation of Copper Stress and Grey Correlation Analysis of Physiological Indexes of Maize Seeding by Soaking With Sucrose [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(3): 753-759. |
[5] | LI Ziming, PAN Yichen, FAN Xiaoping, JIANG Jianming, WANG Zhi'an, WANG Zhonghua. Cloning and Expression Analysis of Genes Related to Starch and Sucrose Metabolism in Fritillaria thunbergii [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2470-2481. |
[6] | WANG Feibing, LI Wei, ZHANG Yang, DANG Changxi, YE Yuxiu, ZHANG Fan, CHEN Xinhong, ZHOU Qing. Study of Overexpression of StSnRK1 Gene Increases Salt Tolerance in Tobacco [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1674-1680. |
[7] | FANG Xiaoqin, XU Liwei, ZHU Tingting, CHAI Jichuan, YU Fan, SHI Liyu, CHEN Wei, YANG Zhenfeng. Effects of γ-Aminobutyric Acid on Sucrose Metabolism of Peach Fruit Under Stress of Low Temperature [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1470-1479. |
[8] | QIU Hanlin, QU Donghai, CHEN Donghong, ZHU Yuqiu, SI Jinping. Identification of PRC2 Subunits of Dendrobium catenatum and Their Responses to Stresses [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 497-505. |
[9] | FENG Yalan, XIONG Ying, ZHANG Jun, YUAN Jiale, CAI Aishan, MA Chao. Role of Alternative Splicing in Plant Development and Abiotic Stress Responses [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 62-70. |
[10] | TUO Haoyuan, LU Fengzhong, ZHANG Yuanyuan, YU Haoqiang, FU Fengling, LI Wanchen. Construction of Expression Vectors of Maize SnRK2 Gene Family by Transfer-PCR Technique [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(7): 1282-1290. |
[11] | LUO Yuxia, LU Huizhi, WANG Liangyan, HUA Yuejin. Research Progress of GAF Domain [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(11): 2158-2164. |
[12] | YE Hongxia, LYU Lü, WANG Tonglin, HAI Rui, WANG Bingliang. Dynamic Changes of Sugar Accumulation and Sucrose Metabolic Enzymes Activity During Fruit Growth and Maturation in Different Varieties of Melon (Cucumis melo L.) [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 1959-1966. |
[13] | WANG Xiaole, CHI Tianhua, LIU Yingxin, WANG Haibin, ZHANG Fei, CHEN Fadi, FANG Weimin. Effects of Sucrose and Mannitol on in vitro Conservation of Chrysanthemum at Low Temperature [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(1): 60-68. |
[14] | WEI Shiyu, WEI Xingyun, LIU Yuan, LI Mengfei, CHENG Hongbo, CHANG Lei, CHAI Shouxi, YANG Delong. Analysis of Physiological and Genetic Characteristics of Post-anthesis Accumulation and Remobilization of Sucrose in Wheat Natural Population Under Two Water Conditions [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(10): 2031-2042. |
[15] | SHAN Hongxuan,FU Chang. The Recent Advances on Plant MAPK Cascade Pathway Under Adverse Stress Conditions [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(4): 680-688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||