Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (9): 1971-1978.DOI: 10.11869/j.issn.100-8551.2021.09.1971
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
DENG Haodong1(), YU Meixia1(
), WU Guangliang1, LUO Xin1, SONG Guiting1, CHEN Liping1, HE Haohua1,2,3, BIAN Jianmin1,2,3,*(
)
Received:
2020-02-18
Accepted:
2020-04-01
Online:
2021-09-10
Published:
2021-07-22
Contact:
BIAN Jianmin
邓浩东1(), 余镁霞1(
), 吴光亮1, 罗鑫1, 宋贵庭1, 陈利平1, 贺浩华1,2,3, 边建民1,2,3,*(
)
通讯作者:
边建民
作者简介:
邓浩东,男,主要从事水稻遗传育种研究。E-mail: 1303051137@qq.com基金资助:
DENG Haodong, YU Meixia, WU Guangliang, LUO Xin, SONG Guiting, CHEN Liping, HE Haohua, BIAN Jianmin. The Detection of QTL Confers Cold Tolerance at the Bud Bursting Period in Rice Using CSSLs Population[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 1971-1978.
邓浩东, 余镁霞, 吴光亮, 罗鑫, 宋贵庭, 陈利平, 贺浩华, 边建民. 利用染色体片段置换系群体定位水稻芽期耐低温主效QTL[J]. 核农学报, 2021, 35(9): 1971-1978.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.09.1971
染色体 Chromosome | 标记数目 Number of marker | 标记间平 均距离 Mean distance between adjacent bins/Mb | 标记间最 小距离 Min distance between adjacent bins/Mb | 标记间最 大距离 Max distance between adjacent bins/Mb |
---|---|---|---|---|
1 | 68 | 0.64 | 0.10 | 3.40 |
2 | 64 | 0.56 | 0.10 | 2.90 |
3 | 59 | 0.62 | 0.10 | 3.45 |
4 | 69 | 0.52 | 0.10 | 4.70 |
5 | 47 | 0.64 | 0.10 | 3.60 |
6 | 37 | 0.82 | 0.10 | 12.85 |
7 | 52 | 0.57 | 0.10 | 2.30 |
8 | 34 | 0.84 | 0.15 | 8.90 |
9 | 33 | 0.68 | 0.15 | 1.85 |
10 | 59 | 0.40 | 0.10 | 1.00 |
11 | 76 | 0.38 | 0.10 | 2.50 |
12 | 57 | 0.47 | 0.10 | 2.95 |
Table 1 The bin marker number and genetic distance between adjacent bins
染色体 Chromosome | 标记数目 Number of marker | 标记间平 均距离 Mean distance between adjacent bins/Mb | 标记间最 小距离 Min distance between adjacent bins/Mb | 标记间最 大距离 Max distance between adjacent bins/Mb |
---|---|---|---|---|
1 | 68 | 0.64 | 0.10 | 3.40 |
2 | 64 | 0.56 | 0.10 | 2.90 |
3 | 59 | 0.62 | 0.10 | 3.45 |
4 | 69 | 0.52 | 0.10 | 4.70 |
5 | 47 | 0.64 | 0.10 | 3.60 |
6 | 37 | 0.82 | 0.10 | 12.85 |
7 | 52 | 0.57 | 0.10 | 2.30 |
8 | 34 | 0.84 | 0.15 | 8.90 |
9 | 33 | 0.68 | 0.15 | 1.85 |
10 | 59 | 0.40 | 0.10 | 1.00 |
11 | 76 | 0.38 | 0.10 | 2.50 |
12 | 57 | 0.47 | 0.10 | 2.95 |
处理 Treatment | 亲本 Parents | CSSLs群体 CSSLs population | ||||||
---|---|---|---|---|---|---|---|---|
9311 | 日本晴 Nipponbare | 均值 Mean | 标准误 SE | 偏度 Skewness | 峰度 Kurtosis | 最小值 Minimum | 最大值 Maximum | |
7℃ | 51.88% | 97.78% | 58% | 0.28 | -1.14 | 0.11 | 0% | 94% |
15℃ | 96.67% | 95.56% | 93% | 0.06 | -1.28 | 1.78 | 71% | 100% |
Table 2 Phenotypic analysis of seed survival rate after 7℃ and 15℃ treatments at the bud bursting period for parents and CSSLs population
处理 Treatment | 亲本 Parents | CSSLs群体 CSSLs population | ||||||
---|---|---|---|---|---|---|---|---|
9311 | 日本晴 Nipponbare | 均值 Mean | 标准误 SE | 偏度 Skewness | 峰度 Kurtosis | 最小值 Minimum | 最大值 Maximum | |
7℃ | 51.88% | 97.78% | 58% | 0.28 | -1.14 | 0.11 | 0% | 94% |
15℃ | 96.67% | 95.56% | 93% | 0.06 | -1.28 | 1.78 | 71% | 100% |
Fig.2 Frequency distribution of seed survival rate after 7℃ and 15℃ treatments at the bud bursting period using CSSLs population Note: A: Seed survival rate at 7℃. B: Seed survival rate at 15℃.
处理 Treatment | QTL | 连锁标记 Linked marker | LOD值 LOD score | 贡献率 PVE/% | 加性效应 Addtive |
---|---|---|---|---|---|
7℃ | qCS7T10 | Chr10-bin475 | 7.26 | 18.85 | -0.22 |
7℃ | qCS7T11 | Chr11-bin590 | 5.87 | 14.92 | -0.19 |
15℃ | qCS15T5 | Chr5-bin306 | 7.61 | 25.69 | -0.08 |
Table 3 QTL mapping of seed survival rate after 7℃ and 15℃ treatments at the bud bursting period using CSSLs population
处理 Treatment | QTL | 连锁标记 Linked marker | LOD值 LOD score | 贡献率 PVE/% | 加性效应 Addtive |
---|---|---|---|---|---|
7℃ | qCS7T10 | Chr10-bin475 | 7.26 | 18.85 | -0.22 |
7℃ | qCS7T11 | Chr11-bin590 | 5.87 | 14.92 | -0.19 |
15℃ | qCS15T5 | Chr5-bin306 | 7.61 | 25.69 | -0.08 |
Fig.3 Chromosomal distribution of major effect QTL confer cold tolerance after 7℃ and 15℃ treatments at the bud bursting period using CSSLs population
[1] | 杨川航, 王开, 杨航, 周大宾, 李建修. 水稻耐寒育种研究进展[J]. 中国农学通报, 2009, 25(6):113-116 |
[2] | 唐江红, 邓小书, 韩龙植, 罗安才, 刘艳, 甘露, 张佳妮, 赵正武. 低温胁迫水稻幼芽生长及生理响应[J]. 西南农业学报, 2019, 32(6):1248-1252 |
[3] |
Moraes de Freitas G P, Basu S, Ramegowda V, Thomas J, Benitez L C, Braga E B, Pereira A. Physiological and transcriptional responses to low-temperature stress in rice genotypes at the reproductive stage[J]. Plant Signaling and Behavior, 2019, 14(4):e1581557
DOI URL |
[4] |
Zhang Q, Chen Q H, Wang S L, Hong Y H, Wang Z L. Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci[J]. Rice, 2014, 7(1):24
DOI PMID |
[5] |
Shinada H, Iwata N, Sato T, Fujino K. Genetical and morphological characterization of cold tolerance at fertilization stage in rice[J]. Breeding Science, 2013, 63(2):197-204
DOI URL |
[6] |
Shimono H, Abe A, Aoki N, Koumoto T, Sato M, Yokoi S, Kuroda E, Endo T, Saeki K Ⅰ, Nagano K. Combining mapping of physiological quantitative trait loci and transcriptome for cold tolerance for counteracting male sterility induced by low temperatures during reproductive stage in rice[J]. Physiologia Plantarum, 2016, 157(2):175-192
DOI URL |
[7] | 韩龙植, 乔永利, 曹桂兰, 张媛媛, 安永平, 芮钟斗, 高熙宗. 水稻生长早期耐冷性QTL分析[J]. 中国水稻科学, 2005, 19(2):122-126 |
[8] | 赵明辉, 张文忠, 马殿荣, 徐正进, 陈温福. 水稻耐冷基因研究进展[J]. 沈阳农业大学学报, 2012, 43(6):711-718 |
[9] | 曾亚文, 叶昌荣, 中时全. 水稻穗期耐冷性近等基因系的选育及耐冷性遗传研究[J]. 自然科学进展, 2001, 11(1):94-96 |
[10] | 詹庆才, 朱克永, 陈祖武, 曾曙珍. 利用分子标记进行水稻苗期耐冷性相关性状的QTLs研究[J]. 杂交水稻, 2005, 20(1):50-55 |
[11] | 杨永霞, Pathak P K, 朱军. 水稻苗重的耐冷性动态QTLs定位[J]. 浙江大学学报, 2005, 31(2):131-138 |
[12] | 吴杏春, 王茵, 林文雄. 水稻苗期耐冷性状的QTL分析[J]. 中国生态农业学报, 2008, 16(4):1067-1069 |
[13] | 邹德堂, 李姣, 郑洪亮, 刘化龙, 王敬国. 冷水胁迫下水稻分蘖期耐冷性状QTL定位研究[J]. 东北农业大学学报, 2012, 43(10):96-102 |
[14] | 张艳梅, 邹德堂. 东北粳稻分蘖期耐冷性鉴定及SSR标记关联分析[J]. 中国水稻科学, 2012, 26(4):423-430 |
[15] | 林静, 朱文银, 张亚东, 朱镇, 赵凌, 陈涛, 赵庆勇, 周丽慧, 方先文, 王艳平, 王才林. 利用染色体片段置换系定位水稻芽期耐冷性QTL[J]. 中国水稻科学, 2010, 24(3):233-236 |
[16] |
Fujino K, Matsuda Y. Genome-wide analysis of genes targeted by qLTG3-1 controlling low-temperature germinability in rice[J]. Plant Molecular Biology, 2010, 72(1/2):137-152
DOI URL |
[17] |
Wang X, Zou B H, Shao Q L, Cui Y M, Lu S, Zhang Y, Huang Q S, Huang J, Hua J. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. Journal of Experimental Botany, 2018, 69(3):413-421
DOI URL |
[18] |
Liu C T, Ou S J, Mao B G, Tang J Y, Wang W, Wang H R, Cao S Y, Schläppi M R, Zhao B G, Xiao G Y, Wang X P, Chu C C. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates[J]. Nature Communications, 2018, 9(1):3302
DOI URL |
[19] |
Lu G W, Wu F Q, Wu W X, Wang H J, Zheng X M, Zhang Y H, Chen X L, Zhou K N, Jin M N, Cheng Z J, Li X Y, Jiang L, Wang H Y, Wan J M. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature[J]. Plant Journal, 2014, 78(3):468-480
DOI URL |
[20] |
Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D L, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L G, Wang W, Qian Q, Ge S, Chong K. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160:1-13
DOI URL |
[21] | Mao D H, Xin Y Y, Tan Y J, Hu X J, Bai J J, Liu Z Y, Yu Y L, Li L Y, Peng C, Fan T, Zhu Y X, Guo Y L, Wang S H, Lu D P, Xing Y Z, Yuan L P, Chen C Y. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(9):3494-3501 |
[22] |
Xiao N, Gao Y, Qian H J, Gao Q, Wu Y Y, Zhang D P, Wang Z P, Zhang X X, Yu L, Li Y H, Pan C H, Liu G Q, Zhou C H, Jiang M, Huang N S, Chen Z, Liang C Z, Dai Z Y, Chen J M, Li A H. Identification of genes related to cold tolerance and a functional allele that confers cold tolerance[J]. Plant Physiology, 2018, 177(3):1108-1123
DOI URL |
[23] |
Saito K, Hayano-Saito Y, Kuroki M, Sato Y. Map-based cloning of the rice cold tolerance gene Ctb1[J]. Plant Science, 2010, 179(1/2):97-102
DOI URL |
[24] |
Zhang Z Y, Li J J, Pan Y H, Li J L, Zhou L, Shi H L, Zeng Y W, Guo H F, Yang S M, Zheng W W, Yu J P, Sun X M, Li G L, Ding Y L, Ma L, Shen S Q, Dai L Y, Zhang H L, Yang S H, Guo Y, Li Z C. Natural variation in enhances rice adaptation to cold habitats[J]. Nature Communications, 2017, 8:14788
DOI URL |
[25] |
Lv Y, Hussain M A, Luo D, Tang N. Current understanding of genetic and molecular basis of cold tolerance in rice[J]. Molecular Breeding, 2019, 39:159
DOI URL |
[26] | 边建民, 贺浩华, 石桓, 朱昌兰, 彭小松, 傅军如, 贺小鹏, 陈小荣, 胡丽芳, 欧阳林娟. 水稻千粒重和垩白粒率相关性分析及其QTL定位[J]. 核农学报, 2014, 28(1):36-43 |
[27] | 许睿, 张莉珍, 谢先芝, 王艳艳, 黄婧芬, 郑晓明, 张丽芳, 程云连, 郑崇珂, 乔卫华, 杨庆文. 基于染色体置换系的普通野生稻耐盐性QTL定位[J]. 植物遗传资源学报, 2020, 21(2):442-451 |
[28] | 纪素兰, 江玲, 王益华, 刘世家, 刘喜, 翟虎渠, 吉村醇, 万建民. 水稻种子耐低温发芽力的QTL定位及上位性分析[J]. 作物学报, 2008(4):551-556 |
[29] | 朱尚尚, 刘晓丽, 刘二宝, 赵凯铭, 朱长丰, 刘强明, 胡肖肖, 李大露, 洪德林. 利用宁粳1号/R254的CSSL群体定位水稻产量相关性状QTL[J]. 杂交水稻, 2019, 34(6):52-61 |
[30] | 游佳, 谷晗, 朱泽, 肖世卓, 王致远, 刘子文, 胡曼曼, 刘世家, 陈亮明, 刘喜, 田云录, 江玲, 刘玲珑. 水稻粒质量和粒形QTL定位及粒长位点qGL3.2的鉴定[J]. 南京农业大学学报, 2019, 42(4):612-621 |
[31] | Jiang N F, Shi S L, Shi H, Khanzada H, Wassan G M, Zhu C L, Peng X S, Yu Q Y, Chen X R, He X P, Fu J R, Hu L F, Xu J, Ouyang L J, Sun X T, Zhou D H, He H H, Bian J M. Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice[J]. Frontiers in Plant Science, 2017, 12(8):1223 |
[32] |
McCouch S R. Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative[CGSNL]. Gene Nomenclature System for Rice[J]. Rice, 2008, 1:72-84
DOI URL |
[33] | 王存虎, 刘东, 许锐能, 杨永庆, 廖红. 大豆叶柄角的QTL定位分析[J]. 作物学报, 2020, 46(1):9-19 |
[34] |
Baruah A R, Ishigo-Oka N, Adachi M, Oguma Y, Tokizono Y, Onishi K, Sano Y. Cold tolerance at the early growth stage in wild and cultivated rice[J]. Euphytica, 2009, 165:459-470
DOI URL |
[35] |
Miura K, Lin S Y, Yano M, Nagamine T. Mapping quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.)[J]. Breeding Science, 2001, 51:293-299
DOI URL |
[36] |
Wang Z F, Wang F H, Zhou R, Wang J F, Zhang H S. Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice(Oryza sativa L.)[J]. Euphytica, 2011, 181:405-413
DOI URL |
[37] |
Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions[J]. The Plant Journal, 2011, 68(6):1039-1050
DOI URL |
[1] | HE Niqing, YANG Dewei, ZHENG Xianghua, HUANG Fenghuang, CHENG Chaoping, YE Ning. Improving Blast Resistance of R20 by Molecular Marker-Assisted Selection of Pigm-1 Gene [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 245-250. |
[2] | YE Shuifeng, LOU Jue, GAO Ningning, YANG Xin, DENG Jielou. Production and Insect-Resistant Characterization of Hanhui 3T a Derivative Line of Huahui No.1 [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 1-6. |
[3] | YAN Ying, WANG Kai, ZHOU Fengli, ZHANG Lixia, HU Zejun, CAO Liming, WU Shujun. Identification and Resistance Evaluation of Rice Blast Resistance Genes in Japonica Rice Germplasm in Yangtze River Delta [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 14-23. |
[4] | CAI Xiaoxi, SHEN Yang, HU Bingshuang, WANG Yan, CHEN Yue, SUN Mingzhe, JIA Bowei, SUN Xiaoli. Overexpression of A Glycine soja S-adenosylmethionine Synthetase GsSAMS in Rice Increases Salt-alkaline Tolerance [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 50-56. |
[5] | XU Weiqing, WANG Xiaolei, LIU Yang, OU-YANG Linjuan, LI Weixing, OU-YANG Qinglan, HE Haohua, ZHU Changlan. QTL Mapping of Rice Cooking Characteristics and Correlation Analysis of Sensory Food Quality [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 66-74. |
[6] | LI Na, ZHOU Hongli, WU Weiguo, LIAO Luyan, LIU Bo, ZONG Ping, REN Jianhao, ZHOU Tao. Identification and Analysis of Dominant Molds in Rice in Different Granaries [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1841-1847. |
[7] | SHI Lyu, XUE Yaguang, WEI Yafeng, YANG Meiying, LI Bo, SHI Xiaoxu, LIU Jian. Effects of Rice Straw Non-Uniform Mulch on Soil Characteristics and Wheat Yield Based on Wide-Narrow Row Planting Pattern [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1668-1677. |
[8] | KUANG Na, TANG Qiyuan, ZHENG Huabin, WANG Weiqin, ZOU Dan, LUO Youyi. Difference of Cooking and Eating Quality, Starch Structure and Properties of Ratoon Rice in Different Regions [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1678-1686. |
[9] | YOU Lingcong, WANG Yuying, LIU Yuxue, LYU Haohao, CHEN Jinyuan, YANG Shengmao. Effects of Biochar-Attapulgite Composite on Zinc and Cadmium Passivation of Paddy Soil and Soil Nutrient and Enzyme Activities [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1717-1723. |
[10] | DING Lan, WANG Lili, TONG Litao, LIU Liya, ZHOU Xianrong, ZHOU Sumei. Effects of Pea Flour Addition on the Quality of Rice Noodles [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1385-1393. |
[11] | CHENG Kaisen, ZHANG Meifang, HUANG Lingling, ZHOU Huabin, YANG Hailong. Isolation and Identification of Non-Saccharomyces Strains From Red Koji and Their Effect on the Flavor Constituents of Rice Wine [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1410-1419. |
[12] | ZHANG Ruifang, ZHANG Hehong, WEI Zhongyan, CHEN Jianping, SUN Zongtao. Screening of Host Factors and Interaction With Coat Protein P10 of Southern Rice Black Streak Dwarf Virus [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1067-1073. |
[13] | HE Dan, JIANG Hongrui, YE Yafeng, YANG Yang, REN Yan, TAO Liangzhi, WU Yuejin, LIU Binmei. Analysis of the Mechanism of Early Senescence Degeneration in Rice Mutant ad1 [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 769-779. |
[14] | MA Quan, WANG Mengyao, SUN Quan, LI Chunyan, DING Jinfeng, ZHU Min, GUO Wenshan, ZHU Xinkai. Effects of Application Modes of Sulfur Coated Urea on Yield, Nitrogen Use Efficiency and Benefit of Winter Wheat Following Rice [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 942-952. |
[15] | WANG Fubiao, RONG Lingling, AN Ting, YU Shizhou, SUN Huimin. Physiological Characteristics of Top Three Functional Leaves for a Senilism Rice Mutant [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(3): 518-525. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||