[1] Sivakumara G, Alibonib B, Bacchetta L. HPLC screening of anti-cancer sulforaphane from important European Brassica species[J]. Food Chemistry, 2007, 104(4): 1761-1764 [2] 杜伟利, 丁晓蕾. 花椰菜在中国的传播及其影响[J]. 青岛农业大学学报(社会科学版), 2019, 31(1): 75-78 [3] 单晓政, 张小丽, 文正华, 刘莉莉, 姚星伟, 江汉民, 牛国保, 孙德岭. 京津冀花椰菜产业现状、发展趋势及对策建议[J]. 蔬菜, 2019(5): 43-46 [4] 荆赞革, 唐征, 裴徐梨, 刘庆, 张小玲, 罗天宽, 朱世杨. 花椰菜种质资源遗传多样性SRAP标记分析[J]. 中国农学通报, 2014, 30(7): 64-69 [5] 林珲, 朱海生, 陈敏氡, 温庆放. 花椰菜游离小孢子培养技术研究进展[J]. 中国农学通报, 2014, 30(13): 71-75 [6] 刘运霞, 王晓武. 我国花椰菜种质资源及育种研究现状[J]. 北方园艺, 2010(19): 218-220 [7] 王雅慧, 李彤, 黄莹, 刘洁霞, 王枫, 熊爱生. 番茄2个ERF-B1亚族转录因子基因的克隆及其对生物和非生物胁迫响应[J]. 核农学报, 2019, 33(10): 1893-1904 [8] 李慧峰, 董庆龙, 赵强, 冉昆. 14个苹果AP2/ERF转录因子基因的克隆与表达分析[J]. 核农学报, 2020, 34(5): 921-931 [9] Li H F, Dong Q L, Zhao Q, Shi S, Ran K. Isolation, sequencing, and expression analysis of 30 AP2/ERF transcription factors in apple[J]. PeerJ, 2020, 8: e8391 [10] Nakano T, Suzuki K, Fujimura T, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006, 140(2): 411-432 [11] El Ouakfaoui S, Schnell J, Abdeen A, Colville A, Labbé H, Han S, Baum B, Laberge S, Miki B. Control of somatic embryogenesis and embryo development by AP2 transcription factors[J]. Plant Molecular Biology, 2010, 74(4/5): 313-326 [12] Jofuku K D, Omidyar P K, Gee Z, Okamuro J K. Control of seed mass and seed yield by the floral homeotic gene APETALA2[J]. Proceeding of the National Academy of Science(USA), 2005, 102(8): 3117-3122 [13] Wollmann H, Mica E, Todesco M, Long J A, Weigel D. On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development[J]. Development, 2010, 137(21): 3633-3642 [14] Maes T, Van de Steene N, Zethof J, Karimi M, D’Hauw M, Mares G, Van Montagu M, Gerats T. Petunia Ap2-like genes and their role in flower and seed development[J]. Plant Cell, 2001, 13(2): 229-244 [15] Lee D K, Yoon S, Kim Y S, Kim J K. Rice OsERF71-mediated root modification affects shoot drought tolerance[J]. Plant Signaling and Behavior, 2017, 12(1): e1268311 [16] Yang H, Yu C, Yan J, Wang X H, Chen F, Zhao Y, Wei W. Overexpression of the Jatropha Curcas JcERF1 gene coding an AP2/ERF-type transcription factor increases tolerance to salt in transgenic tobacco[J]. Biochemistry (Mosc), 2014, 79(11): 1226-1236 [17] Wang M, Dai W S, Du J, Ming R H, Dahro B, Liu J H. ERF109 of trifoliate orange (Poncirus trifoliata (L.) Raf.) contributes to cold tolerance by directly regulating expression of Prx1 involved in antioxidative process[J]. Plant Biotechnology Journal, 2019, 17(7): 1316-1332 [18] Cheng Z H, Zhang X M, Zhao K, Yao W J, Li R H, Zhou B R, Jiang T B. Over-expression of ERF38 gene enhances salt and osmotic tolerance in transgenic poplar[J]. Frontiers in Plant Science, 2019, 10: 1375 [19] 高世超, 钟凤林, 林义章, 赵瑞丽, 林俊芳, 杨碧云, 胡海非. 青花菜BrERF2基因的RACE克隆与模拟酸雨胁迫下的表达分析[J]. 核农学报, 2015, 29(11): 2093-2102 [20] Li Z J, Tian Y S, Xu J, Fu X Y, Gao J J, Wang B, Han H J, Wang L J, Peng R, Yao Q H. A tomato ERF transcription factor, SlERF84, confers enhanced tolerance to drought and salt stress but negatively regulates immunity against Pseudomonas syringae pv. tomato DC3000[J]. Plant Physiology and Biochemistry, 2018, 132: 683-695 [21] Li H, Wang Y, Wu M, Li L H, Li C, Han Z P, Yuan J Y, Chen C B, Song W Q, Wang C G. Genome-wide identification of AP2/ERF transcription factors in cauliflower and expression profiling of the ERF family under salt and drought stresses[J]. Frontiers in Plant Science, 2017, 8: 946 [22] Krizman M, Jakse J, Baricevic D, Javornik B, Prosekm M. Robust CTAB-activated charcoal protocol for plant DNA extraction[J]. Acta Agriculturae Slovenica, 2006, 87(2): 427-433 [23] Berens M L, Berry H M, Mine A, Argueso C T, Tsuda K. Evolution of hormone signaling networks in plant defense[J]. Annual Review of Phytopathology, 2017, 55: 401-425 [24] Nejat N, Mantri N. Plant immune system: crosstalk between responses to biotic and abiotic stresses the missing link in understanding plant defence[J]. Current Issues in Molecular Biology, 2017, 23: 1-16 [25] Davey M W, Graham N S, Vanholme B, Swennen R, May S T, Keulemans J. Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa[J]. BMC Genomics, 2009, 10: 436 [26] 胡晓晴. 一氧化氮处理后长白落叶松转录组测序及LoERF017基因功能研究[D]. 哈尔滨: 东北林业大学, 2016 [27] Li S J, Yin X R, Xie X L, Allan A C, Ge H, Shen S L, Chen K S. The Citrus transcription factor, CitERF13, regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump, CitVHA-c4[J]. Scientific Reports, 2016, 6: 20151 [28] Han Z Y, Hu Y A, Lv Y D, Rose J K C, Sun Y Q, Shen F, Wang Y, Zhang X Z, Xu X F, Wu T, Han Z H. Natural variation underlies differences in ETHYLENE RESPONSE FACTOR17 activity in fruit peel degreening[J]. Plant Physiology, 2018, 176(3): 2292-2304 |