[1] 易家宁, 王康才, 张琪绮, 董雨青, 毛晓敏, 邓艳婷. 干旱胁迫对紫苏生长及品质的影响[J]. 核农学报, 2020, 34(6): 1320-1326 [2] 杨彦会, 马晓, 张子山, 郭军, 李月楠, 梁英, 宋健民, 赵世杰. 干旱胁迫对蜡质含量不同小麦近等基因系光合特性的影响[J]. 中国农业科学, 2018, 51(22): 4241-4251 [3] 路之娟, 张永清, 张楚. 干旱胁迫对不同苦荞品种苗期生长和根系生理特征的影响[J]. 西北植物学报, 2018, 38(1): 112-120 [4] 马峰, 张华锋, 张怀友, 王明友. 西葫芦生长及生理特性对水分胁迫的响应[J]. 现代园艺, 2015(21): 3-5 [5] 牛芬菊, 张雷, 宋学栋, 李小燕, 邸维利, 杨海兴. 半干旱区注水补灌对西葫芦产量及经济效益的影响[J]. 蔬菜, 2018(9): 71-73 [6] 王晓庆, 张超, 王彦杰, 董丽. 牡丹NCED基因的克隆和表达分析[J]. 园艺学报, 2012, 39(10): 2033-2044 [7] 王赞, 陈丹, 岳川, 曹红利, 郭雅玲. 茶树CsNCED2基因的克隆和表达分析[J]. 西北植物学报, 2018, 38(6): 994-1002 [8] 程鸿燕, 郭昱, 马芳芳, 王玉文, 禾璐, 韩渊怀. 谷子NCED基因家族鉴定及其干旱胁迫响应表达模式分析[J]. 江苏农业科学, 2019, 47(1): 40-44 [9] Sun L, Yuan B, Zhang M, Wang L, Cui M M, Wang Q, Leng P. Fruit-specific RNAi-mediated suppression of SlNCED1 increases both lycopene and β-carotene contents in tomato fruit[J]. Journal of Experimental Botany, 2012, 63(8): 3097-3108 [10] Neves D M, Coelho Filho M A, Bellete B S, Silva M F G F, Souza D T, Soares Filho W D S, Costa M G C. Comparative study of putative 9-cis-epoxycarotenoid dioxygenase and abscisic acid accumulation in the responses of Sunki mandarin and Rangpur lime to water deficit[J]. Molecular Biology Reports, 2013, 40(9): 5339-5349 [11] Zhu L J, Deng X G, Zou L J, Li PX, Wu J Q, Zhang D W, Lin H H. Celastrol, produced by Tripterygium wilfordii Hook F. enhances defense response in cucumber seedlings against diverse environmental stresses[J]. Journal of Plant Biology, 2017, 60(1): 82-92 [12] Wan X, Li L. Molecular cloning and characterization of a dehydration-inducible cDNA encoding a putative 9-cis-epoxycarotenoid dioxygenase in Arachis hygogaea L[J]. DNA Sequence, 2005, 16(3): 217-223 [13] Tong S M, Xi H X, Ai K J, Hou H S. Overexpression of wheat TaNCED gene in Arabidopsis enhances tolerance to drought stress and delays seed germination[J]. Biology Plantarum, 2017, 61(1): 64-72 [14] Tan B C, Schwartz S H, Zeevaart J A D, McCarty D R. Genetic control of abscisic acid biosynthesis in maize[J]. Proceedings of the National Academy of Sciences of the USA, 1997, 94(22): 12235-12240 [15] Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Regulation of drought tolerance by gene manipulation of 9‐cis‐epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. Plant Journal, 2001, 27(4): 325-333 [16] Pedrosa A M, Cidade L C, Martins C P S, Macedo A F, Neves D M, Gomes F P, Floh E IS, Costa M G C. Effect of overexpression of citrus 9-cis-epoxycarotenoid dioxygenase 3 (CsNCED3) on the physiological response to drought stress in transgenic tobacco[J]. Genetics Molecular Research, 2017, 16(1): gmr16019292 [17] Espasandin F D, Maiale S J, Calzadilla P, Ruiz O, Sansberro P A. Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants[J]. Plant Physiology Biochemistry, 2014, 76: 29-35 [18] González-Verdejo C Ⅰ, Obrero Á, Román B, Gómez P. Expression profile of carotenoid cleavage dioxygenase genes in summer squash (Cucurbita pepo L.)[J]. Plant Food Human Nutrition, 2015, 70(2): 200-206 [19] 吴洁芳, 纪凯, 冷平, 任杰, 赵胜利, 孙亮. 西葫芦果实CpNCED1基因3'端的克隆及其表达分析[J]. 中国农业大学学报, 2010, 15(5): 25-30 [20] Liu J T, Wang B, Li Y P, Huang L F, Zhang Q R, Zhu H S, Wen Q F. RNA sequencing analysis of low temperature and low light intensity-responsive transcriptomes of zucchini (Cucurbita pepo L.)[J]. Scientia Horticulturae, 2020, 265: 109263 [21] 刘建汀, 朱海生, 王彬, 李永平, 陈敏氡, 张前荣, 温庆放. 西葫芦CpActin内参基因的分离及其作为内参基因的初步应用[J]. 植物遗传资源学报, 2019, 20(1): 188-198 [22] Xiao H M, Cai W J, Ye T T, Ding J, Feng Y Q. Spatio-temporal profiling of abscisic acid, indoleacetic acid and jasmonic acid in single rice seed during seed germination[J]. Analytica Chimica acta, 2018, 1031: 119-127 [23] Huang L L, Yang X, Sun P, Tong W, Hu S Q. The first Illuminabased De Novo transcriptome sequencing and analysis of safflower flowers[J]. PLoS One, 2012, 7(6): e38653 [24] Li B, Dewey C. RSEM: Accurate transcript quantification from RNA-seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323 [25] Qin X Q, Zeevaart J A D. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean[J]. Proceedings of the National Academy of Sciences, 1999, 96(26):15354-15361 [26] Chernys J T, Zeevaart J A. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation ofabscisic acid biosynthesis in avocado[J]. Plant Physiology, 2000, 124(1): 343-353 [27] Zhang M, Leng P, Zhang G, Li X. Cloning and functional analysis of 9-cis- epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits[J]. Journal of Plant Physiology, 2009, 166(12): 1241-1252 [28] 朱海生, 李永平, 花秀凤, 温庆放. 草莓9-顺式-环氧类胡萝卜素双加氧酶基因FaNCED的克隆及表达分析[J]. 园艺学报, 2012, 39(1): 40-48 [29] 王瑞云, 杨阳, 王海岗, 陈凌, 王纶, 陆平, 刘敏轩, 乔治军. 糜子PmNCED1的克隆及其对PEG胁迫的响应[J]. 核农学报, 2018, 32(2): 244-256 [30] Jia Y Y, Liu J L, Bai Z Q, Ding K, Li H Y, Liang Z S. Cloning and functional characterization of the SmNCED3 in Salvia miltiorrhiza[J]. Acta Physiologiae Plantarum, 2018, 40(7): 133 [31] 李阳, 秦智伟, 周秀艳, 辛明. 黄瓜主要种质资源耐旱性评价[J]. 北方园艺, 2016(20): 5-8 [32] 陈文妃, 杜长霞, 金佩颖, 何亚妮, 樊怀福. 模拟干旱胁迫对黄瓜幼苗组织结构的影响[J]. 浙江农林大学学报, 2017, 34(6): 1149-1154 [33] 胡能兵, 隋益虎, 舒英杰, 何克勤, 储娜. 高温干旱胁迫对辣椒热害指标及叶绿素荧光参数Fv/Fm的影响[J]. 基因组学与应用生物学, 2018, 37(12): 5421-5428 [34] Ors S, Ekinci M, Yildirim E, Sahin U. Changes in gas exchange capacity and selected physiological properties of squash seedlings(Cucurbita pepo L.) under well-watered and drought stress conditions[J]. Archives of Agronomy and Soil science, 2016, 62(12): 1700-1710 [35] Dou X Y, Wu G J, Huang H Y, Hou Y J, Gu Q, Peng C L. Responses of Jatropha curcas L. seedlings to drought stress[J]. Journal of Applied Ecology, 2008, 19(7): 1425-1430 [36] 巩檑, 宋继玲, 甘晓燕, 刘璇, 陈虞超, 郭志乾, 宋玉霞. 模拟干旱胁迫下马铃薯StNCED1表达量及与ABA含量的相关性分析[J]. 植物遗传资源学报, 2018, 19(3): 561-567 [37] 徐学中, 汪婷, 万旺, 李思慧, 朱国辉. 水稻ABA生物合成基因OsNCED3响应干旱胁迫[J]. 作物学报, 2018, 44(1): 24-31 |