[1] Tian T, Posis K, Maroon-Lango C J, Mavrodieva Ⅴ, Haymes S, Pitman T L, Falk B W. First report of cucumber green mottle mosaic virus on melon in the United States[J]. Plant Disease, 2014, 98(8): 1163 [2] Lee S Y, Win N K K, Cho D M, Lee S H, Jung H Y. Cucumber green mottle mosaic virus (CGMMV) can induce hair-like tissues on genus cucumis seeds[J]. Scientia Horticulturae, 2012, 146: 76-80 [3] Mink G Ⅰ.Pollen and seed-transmitted viruses and viroids[J]. Annual Review of Phytopathology, 1993, 31: 375-402 [4] Liu H W, Luo L X, Li J Q, Liu P F, Chen X Y, Hao J J.Pollen and seed transmission of cucumber green mottle mosaic virus in cucumber[J]. Plant Pathology, 2014, 63: 72-77 [5] Ainsworth G C.Mosaic disease of the cucumber[J]. Annals of Applied Biology, 1935, 22: 55-67 [6] Tesoriero L A, Chambers G, Srivastava M, Smith S, Conde B, Tran-Nguyen L T T. First report of cucumber green mottle mosaic virus in Australia[J]. Australasian Plant Disease Notes, 2016, 11: 1 [7] Dombrovsky A, Tran-Nguyen L T T, Jones R A C. Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology and management[J]. Annual Review of Phytopathology, 2017, 55: 231-256 [8] Llave C.MicroRNAs: More than a role in plant development?[J]. Molecular in Plant Pathology, 2004, 5: 361-366 [9] Khraiwesh B, Zhu J K, Zhu J.Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants[J]. Biochimica et Biophysica Acta, 2012, 1819: 137-148 [10] Dai Z Y, Tan J, Zhou C, Yang X F, Yang F, Zhang S J, Sun S C, Miao X X, Shi Z Y.The OsmiR396-OsGRF8-OsF3H-flavonoid pathway mediates resistance to the brown planthopper in rice (Oryza sativa)[J]. Plant Biotechnology Journal, 2019, 17(8): 1657-1669 [11] Schommer C, Debernardi J M, Bresso E G, Rodriguez R E, Palatnik J F.Repression of cell proliferation by miR319-regulated TCP4[J]. Molecular Plant, 2014, 7(10): 1533-1544 [12] Koyama T, Sato F, Ohme-Takagi M.Roles of miR319 and TCP transcription factors in leaf development[J]. Plant Physiology, 2017, 175(2): 874-885 [13] Nag A, King S, Jack T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106: 22534-22539 [14] Sun X D, Wang C D, Xiang N, Li X, Yang S H, Du J C, Yang Y P, Yang Y Q.Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor[J]. Plant Biotechnology Journal, 2017, 15(10): 1284-1294 [15] Vadde B Ⅴ L, Challa K R, Nath U. The TCP4 transcription factor regulates trichome cell differentiation by directly activating GLABROUS INFLORESCENCE STEMS in Arabidopsis thaliana[J]. Plant Journal, 2018, 93(2): 259-269 [16] Wang H F, Wang H W, Liu R, Xu Y T, Lu Z C, Zhou C E.Genome-wide identification of TCP family transcription factors in Medicago truncatula reveals significant roles of miR319-targeted TCPs in nodule development[J]. Frontiers in Plant Science, 2018, 9: 774 [17] Zhao W C, Li Z L, Fan J W, Hu C L, Yang R, Qi X, Chen H, Zhao F K, Wang S H.Identification of jasmonic acid-associated microRNAs and characterization of the regulatory roles of the miR319/TCP4 module under root-knot nematode stress in tomato[J]. Journal of Experimental Botany, 2015, 66(15): 4653-4667 [18] Pan X P, Nichols R L, Li C, Zhang B H.MicroRNA-target gene responses to root knot nematode (Meloidogyne incognita) infection in cotton (Gossypium hirsutum L.)[J]. Genomics, 2019, 111(3): 383-390 [19] Zhang C, Ding Z M, Wu K C, Yang L, Li Y, Yang Z, Shi S, Liu X J, Zhao S S, Yang Z R, Wang Y, Zheng L P, Wei J, Du Z G, Zhang A H, Miao H Q, Li Y, Wu Z J, Wu J G.Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice[J]. Molecular Plant, 2016, 9(9): 1302 [20] Križnik M, Petek M, Dobnik D, Ramšak Ž, Baebler Š, Pollmann S, Kreuze J F, Žel J, Gruden K.Salicylic acid perturbs sRNA-gibberellin regulatory network in immune response of potato to potato virus Y infection[J]. Frontiers in Plant Science, 2017, 8: 2192 [21] Sun Y Y, Niu X W, Fan M.Genome-wide identification of Cucumber green mottle mosaic virus-responsive microRNAs in watermelon[J]. Archives of Virology, 2017, 162: 2591-2602 [22] Zuker M.Mfold web server for nucleic acid folding and hybridization prediction[J]. Nucleic Acids Research, 2003, 31(13): 3406-3415 [23] Kozomara A, Birgoanu M, Griffiths-Jones S. miRBase: From microRNA sequences to function[J]. Nucleic Acids Research, 2019, 47: D155-D162 [24] Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE: A database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002, 30: 325-327 [25] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25: 402-408 [26] Liu H W, Luo L X, Liang C Q, Jiang N, Liu P F, Li J Q.High-throughput sequencing identifies novel and conserved cucumber (Cucumis sativus L.) microRNAs in response to Cucumber green mottle mosaic virus infection[J]. PLoS One, 2015, 10(6): e0129002 [27] 孙玉燕, 何艳军, 牛晓伟, 崔狄, 范敏. 西瓜miR164b靶基因鉴定及其对黄瓜绿斑驳花叶病毒侵染应答的分析[J]. 园艺学报, 2018, 45(3): 482-492 [28] Palatnik J F, Wollmann H, Schommer C, Schwab R, Boisbouvier J, Rodriguez R, Warthmann N, Allen E, Dezulian T, Huson D, Carrington J C, Weigel D.Sequence and expression differences underlie functional specialization of Arabidopsis microRNAs miR159 and miR319[J]. Developmental Cell, 2007, 13(1): 115-125 [29] Bologna N G, Mateos J L, Bresso E G, Palatnik J F.A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159[J]. Embo Journal, 2009, 28(23): 3646-3656 [30] Ori N, Cohen A R, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni Ⅰ, Pekker Ⅰ, Alvarez J P, Blum E, Zamir D, Eshed Y.Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato[J]. Nature Genetics, 2007, 39: 787-791 |