[1] Zhu J K.Abiotic stress signaling and responses in plants[J]. Cell 2016, 167(2): 313-324 [2] Anjum S A, Xie X Y, Wang L C, Saleem M F, Lei W.Morphological, physiological and biochemical responses of plants to drought stress[J]. African Journal of Agricultural Research, 2011, 6(9): 2026-2032 [3] Nakashima K, Ito Y, Yamaguchi-Shinozaki K.Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses[J]. Plant Physiology, 2009, 149(1): 88-95 [4] Singh K B, Foley R C, Oñate-Sánchez L.Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 2002, 5(5): 430-436 [5] Harfouche A, Meilan R, Altman A.Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement[J]. Tree Physiology, 2014, 34(11): 1181-1198 [6] Olsen A, Ernst H A, Leggio L, Skriver K.NAC transcription factors: Structurally distinct, functionally diverse[J]. Trends in Plant Science, 2005, 10(2): 79-87 [7] Puranik S, Sahu P, Srivastava P S, Prasad M.NAC proteins: Regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6): 369-381 [8] Souer E, Houwelingen A V, Kloos D, Mol J, Koes R.The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 1996, 85(2): 159-170 [9] Petricka J J, Winter C M, Benfey P N.Control of Arabidopsis root development[J]. Annual Review of Plant Biology, 2012, 63(1): 563 [10] Hao Y J, Wei W, Song Q X, Chen H W, Zhang Y Q, Wang F, Zou H F, Lei G, Tian A G, Zhang W K.Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. Plant Journal, 2011, 68(2): 302-313 [11] Zimmermann R, Werr W.Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues from Zea mays L[J]. Plant Molecular Biology, 2005, 58(5): 669-685 [12] Negi S, Tak H, Ganapathi T R.Native vascular related NAC transcription factors are efficient regulator of multiple classes of secondary wall associated genes in banana[J]. Plant Science, 2017, 265(1): 70-86 [13] Krizek B A, Fletcher J C.Molecular mechanisms of flower development: An armchair guide[J]. Nature Reviews Genetics. 2005, 6(9): 688-698 [14] Guo Y F, Gan S S.AtNAP, a NAC family transcription factor, has an important role in leaf senescence[J]. Plant Journal for Cell and Molecular Biology, 2006, 46(4): 601-612 [15] Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K.NAC transcription factors in plant abiotic stress responses[J]. BBA-Gene Regulatory Mechanisms, 2012, 1819(2): 97-103 [16] Hu H H, Dai M Q, Yao J L, Xiao B Z, Li X H, Zhang Q F, Xiong L Z.Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12987-12992 [17] Liu Y M, Yu X W, Liu S S, Peng H, Mijiti A, Wang Z, Zhang H, Ma H.A chickpea NAC-type transcription factor, CarNAC6, confers enhanced dehydration tolerance in Arabidopsis[J]. Plant Molecular Biology Reporter, 2017, 35(1): 83-96 [18] Lu X, Zhang X F, Duan H, Lian C L, Liu C, Yin W L, Xia X L.Three stress-responsive NAC transcription factors from Populus euphratica differentially regulate salt and drought tolerance in transgenic plants[J]. Physiologia Plantarum, 2018, 162:77-79 [19] 孙丽娟, 王晓荣, 倪晓祥, 程龙军. 巨桉非生物逆境响应基因EgrNAC1的基因结构和表达分析[J]. 林业科学, 2017, 53(10): 60-69 [20] Steponkus P L, Uemura M, Joseph R A, Gilmour S J, Thomashow M F.Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(24): 14570-14575 [21] 阎依超, 万春雁, 古咸彬, 郭成宝, 陈月红, 高志红. 低温胁迫下转RdreB1BI草莓逆境相关基因表达及抗性评价[J]. 核农学报, 2018, 32(11): 61-72 [22] Liu X, Hong L, Li X Y, Yao Y, Hu B, Li L.Improved drought and salt tolerance in transgenic Arabidopsis overexpressing a NAC Transcriptional Factor from Arachis hypogaea[J]. Bioscience, Biotechnology, and Biochemistry, 2011, 75(3): 443-450 [23] 刘静妍, 施怡婷, 杨淑华. CBF:平衡植物低温应答与生长发育的关键[J]. 植物学报, 2017(6): 12-21 [24] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 2000, 25(4): 402-408 [25] 曹云飞, 张海娜, 肖凯. CBF转录因子介导的植物低温信号转导研究进展[J]. 棉花学报, 2007, 19(4): 304-311 [26] 童超. ABA生理功能与信号转导相关综述[J]. 科技资讯, 2008(10): 44-45 [27] Lu P L, Chen N Z, An R, Su Z, Qi B S, Ren F, Chen J, Wang X C.A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis[J]. Plant Molecular Biology, 2007, 63(2): 289-305 [28] Han X M, Feng Z Q, Xing D D, Yang Q, Wang R G, Qi L W, Li G J.Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis[J]. BMC Plant Biology, 2015, 15(1): 1-12 [29] Tran L-S P, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell, 2004, 16(9): 2481-2498 [30] Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X.Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton[J]. PLoS One, 2014, 9(1): e86895 [31] Yang X W, Wang X Y, Ji L, Yi Z L, Fu C X, Ran J C, Hu R B, Zhou G K.Overexpression of a Miscanthus lutarioriparius NAC gene MlNAC5 confers enhanced drought and cold tolerance in Arabidopsis[J]. Plant Cell Reports, 2015, 34(6): 943-958 [32] Jin H X, Huang F, Cheng H, Song H N, Yu D Y.Overexpression of the GmNAC2 gene, an NAC transcription factor, reduces abiotic stress tolerance in tobacco[J]. Plant Molecular Biology Reporter, 2013, 31(2): 435-442 [33] Huang L, Hong Y B, Zhang H J, Li D Y, Song F M.Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology, 2016, 16(1): 203 [34] You J, Zong W, Li X K, Ning J, Hu H h, Li X H, Xiao J H, Xiong L Z. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice[J]. Journal of Experimental Botany, 2013, 64(2): 569-583 [35] Huang Q J, Wang Y, Li B, Chang J L, Chen M J, Li K X, Yang G X, He G Y.TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis[J]. BMC Plant Biology, 2015, 15(1): 1-15 [36] Shi Y, Ding Y, Yang S.Molecular regulation of CBF signaling in cold acclimation[J]. Trends in Plant Science, 2018, 23(7): 623-637 [37] Viswanathan C, Zhu J H, Zhu J K.Cold stress regulation of gene expression in plants[J]. Trends in Plant Science, 2007, 12(10): 444-451 [38] Shan W, Kuang J F, Jin L W, Chen J Y.Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1[J]. Plant Cell and Environment, 2014, 37(9): 2116-2127 [39] Qu Y T, Mei D, Zhang Z Q, Dong J L, Tao W.Overexpression of the Medicago falcata NAC transcription factor MfNAC3 enhances cold tolerance in Medicago truncatula[J]. Environmental and Experimental Botany, 2016, 129: 67-76 |