Journal of Nuclear Agricultural Sciences ›› 2021, Vol. 35 ›› Issue (2): 349-356.DOI: 10.11869/j.issn.100-8551.2021.02.0349
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
DONG Xianwen, FU Lin, ZHANG Li, ZHOU Peng, REN Hangxing, WANG Gaofu*
Received:
2019-09-16
Online:
2021-02-10
Published:
2020-12-14
董贤文, 付琳, 张丽, 周鹏, 任航行, 王高富*
通讯作者:
*王高富,男,副研究员,主要从事反刍动物营养研究。E-mail:作者简介:
董贤文,男,主要从事反刍动物营养研究。E-mail:dxwcqxky@163.com
基金资助:
DONG Xianwen, FU Lin, ZHANG Li, ZHOU Peng, REN Hangxing, WANG Gaofu. Transmembrane Transport Regulation Mechanism of Monocarboxylate Transporter 1(MCT1) on the Alimentary Canal Epithelium[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(2): 349-356.
董贤文, 付琳, 张丽, 周鹏, 任航行, 王高富. 消化道上皮单羧酸转运蛋白1(MCT1)跨膜转运功能的调控机理[J]. 核农学报, 2021, 35(2): 349-356.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2021.02.0349
[1] Christian A, Maino V, Hania M T. Burton-Obanla A A, Douglas K G, Arthur A E. Carbohydrate nutrition and the risk of cancer[J]. Current Nutrition Reports, 2019, 8(3): 230-239. [2] Moschen I, Bröer A, Galić S, Lang F, Bröer S. Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT)[J]. Neurochemical Research, 2012, 37(11): 2562-2568 [3] Bergman E N.Energy comributions of volatile fatty acids from the gastrointestinal tract in various species[J]. Physiological Reviews, 1990, 70(2): 567-590 [4] Henning S J, Hird F J.Diurnal variations in the concentrations of volatile fatty acids in the alimentary tracts of wild rabbits[J]. British Journal of Nutrition, 1972, 27: 57-64 [5] Sakata T, Yajima T.Influence of short chain fatty acids on the epithelial cell division of digestive cell tract[J]. Quarterly Journal of Experimental Physiology, 1984, 69: 639-648 [6] Rojas-Morales P, Tapia E, Pedraza-Chaverri J.β-Hydroxybutyrate: A signaling metabolite in starvation response[J]. Cellular Signalling, 2016, 28(8): 917-923 [7] Connor E E, Li R W, Baldwin R L V, Li C. Gene expression in the digestive tissues of ruminants and their relationships with feeding and digestive processes[J]. Animal, 2010, 4(7): 993-1007 [8] Aschenbach J R, Penner G B, Stumpff F, Gäbel G.RUMINANT NUTRITION SYMPOSIUM: Role of fermentation acid absorption in the regulation of ruminal pH[J]. Journal of Animal Science, 2011, 89(4):1092-1107 [9] Halestrap A P.The SLC16 gene family-Structure, role and regulation in health and disease[J]. Molecular Aspects of Medicine, 2013, 34(2/3): 337-349 [10] Sasaki S, Futagi Y, Kobayashi M, Ogura J, Iseki K.Functional characterization of 5-oxoproline transport via SLC16A1/MCT1[J]. Journal of Biological Chemistry, 2015, 290(4): 2303-2311 [11] Poole R C, Halestrap A P.Identification and partial purification of the erythrocyte lactate transporter[J]. Biochemical Journal, 1992, 283(3): 855-862 [12] Garcia C K, Goldstein J L, Pathak R K, Anderson R G, Brown M S.Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates: Implications for the Cori cycle[J]. Cell, 1994, 76(5): 865-873 [13] Garcia C K, Li X, Luna J, Francke U. cDNA cloning of the human monocarboxylate transporter 1 and chromosomal localization of the SLC16A1 locus to 1p13.2-p12[J]. Genomics, 1994, 23(2): 500-503 [14] Ritzhaupt A, Wood I S, Ellis A, Hosie K B, Shirazi-Beechey S P. Identification of a monocarboxylate transporter isoform type 1 (MCT1) on the luminal membrane of human and pig colon[J]. Biochemical Society Transactions, 1998, 26(2): S120 [15] Kirat D, Inoue H, Iwano H, Hirayama K, Yokota H, Taniyama H, Kato S.Expression and distribution of monocarboxylate transporter 1 (MCT1) in the gastrointestinal tract of calves[J]. Research in Veterinary Science, 2005, 79(1): 45-50 [16] Kirat D, Masuoka J, Hayashi H, Iwano H, Yokota H, Taniyama H, Kato S.Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen[J]. Journal of Physiology, 2006, 576(2): 635-647 [17] Ritzhaupt A, Wood I S, Ellis A, Hosie K B, Shirazi-Beechey S P. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: Its potential to transport L-lactate as well as butyrate[J]. Journal of Physiology, 1998, 513(3): 719-732 [18] 王亚洲, 孙国权, 赵晨旭, 魏园, 崔媛旭, 苑学, 王哲, 李心慰, 刘国文. MCT1在犊牛消化道的分布以及SCFA对MCT1表达的影响[J]. 中国兽医学报, 2017, 37(3): 509-513 [19] Welter H, Claus R.Expression of the monocarboxylate transporter 1 (MCT1) in cells of the porcine intestine[J]. Cell Biology International, 2008, 32(6): 638-645 [20] Gill R K, Saksena S, Alrefai W A, Sarwar Z, Goldstein J L, Carroll R E, Ramaswamy K, Dudeja P K.Expression and membrane localization of MCT isoforms along the length of the human intestine[J]. American Journal of Cell Physiology, 2005, 289(4): 846-852 [21] Koho N M, Taponen J, Tiihonen H, Manninen M, Pösö A R.Effects of age and concentrate feeding on the expression of MCT1 and CD147 in the gastrointestinal tract of goats and Hereford finishing beef bulls[J]. Research in Veterinary Science, 2011, 90(2): 301-305 [22] Graham C, Gatherar Ⅰ, Haslam Ⅰ, Glanville M, Simmons N L.Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium[J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2007, 292(2): 997-1007 [23] Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N.Regulation of the blood-biliary barrier: Interaction between gap and tight junctions in hepatocytes[J] Medical Molecular Morphology, 2003, 36(3): 157-164 [24] Pfannkuche H, Taifour F, Steinhoff-Wagner J, Hammon H M, Gäbel G.Post-natal changes in MCT1 expression in the fore stomach of calves[J]. Journal of Animal Physiology and Animal Nutrition, 2014, 98(1): 140-148 [25] Wilson M C, Meredith D, Halestrap A P.Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ[J]. Journal of Biological Chemistry, 2002, 277(5): 36-66 [26] Kirk P, Wilson M C, Heddle C, Brown M H, Barclay A N, Halestrap A P.CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression[J]. Embo Journal, 2000, 19(15): 3896-3904 [27] Moschen Ⅰ, Bröer A, Galić S, Lang F, Bröer S. Significance of short chain fatty acid transport by members of the monocarboxylate Transporter Family (MCT)[J]. Neurochemical Research, 2012, 37(11): 25-62 [28] Stein J, Zores M, Schröder O.Short-chain fatty acid (SCFA) uptake into Caco-2 cells by a pH-dependent and carrier mediated transport mechanism[J]. European Journal of Nutrition, 2000, 39(3): 121-125 [29] Yan L, Zhang B, Shen Z M.Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats[J]. Journal of Dairy Science, 2014, 97(9): 5668-5675 [30] Ritzhaupt A, Ellis A, Hosie K B, Shirazi-Beechey S P. The characterization of butyrate transport across pig and human colonic luminal membrane[J]. Journal of Physiology, 1998, 507(3): 819-830 [31] Aschenbach J R, Penner G B, Stumpff F, Gäbel G.Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH[J]. Journal of Animal Science, 2011, 89(4): 1092-1107 [32] Wilson M C, Meredith D, Bunnun C, Sessions R B, Halestrap A P.Studies on the DIDS-binding site of monocarboxylate transporter 1 suggest a homology model of the open conformation and a plausible translocation cycle[J]. Journal of Biological Chemistry, 2009, 284(30): 20011-20021 [33] Dengler F, Rackwitz R, Benesch F, Pfannkuche H, Gäbel G.Bicarbonate-dependent transport of acetate and butyrate across the basolateral membrane of sheep rumen epithelium[J]. Acta Physiologica, 2013, 210(2): 403-414 [34] Aschenbach J R, Bilk S, Tadesse G, Stumpff F, Gäbel G.Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2009, 296(5): 1098-1107 [35] Kirat D, Kondo K, Shimada R, Kato S.Dietary pectin up-regulates monocaboxylate transporter 1 in the rat gastrointestinal tract[J]. Experimental Physiology, 2009, 94(4): 422-433 [36] Villodre T C, Boudry C, Stumpff F, Aschenbach J R, Vahjen W, Zentek J, Pieper R.Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling[J]. British Journal of Nutrition, 2015, 113(4): 610-617 [37] Kuzinski J, Röntgen M.The mRNA and protein expression of ruminal MCT1 is increased by feeding a mixed hay/concentrate diet compared with hay ad libitum diet (short communication)[J]. Archiv Fur Tierzucht, 2011, 54(3): 280-286 [38] 刘军花, 朱伟云, 毛胜勇. 高谷物日粮促进山羊瘤胃上皮单羧酸转运蛋白1及钠钾ATP酶mRNA的表达[J]. 草业学报, 2017, 26(2): 95-101 [39] Metzler-Zebeli B U, Hollmann M, Sabitzer S, Podstatzky-Lichtenstein L, Klein D, Zebeli Q. Epithelial response to high-grain diets involves alteration in nutrient transporters and Na+/K+-ATPase mRNA expression in rumen and colon of goats[J]. Journal of Animal Science, 2013, 91(9): 4256-4266 [40] Laarman A H, Ruiz-Sanchez A L, Sugino T, Guan L L, Oba M. Effects of feeding a calf starter on molecular adaptations in the ruminal epithelium and liver of Holstein dairy calves[J]. Journal of Dairy Science, 2012, 95(5): 2585-2594. [41] Flaga J, Górka P, Zabielski R, Kowalski Z M.Differences in monocarboxylic acid transporter type 1 expression in rumen epithelium of newborn calves due to age and milk or milk replacer feeding[J]. Journal of Animal Physiology and Animal Nutrition, 2014, 99(3): 521-530 [42] Cuff M A, Lambert D W, Shirazi-Beechey S P. Substrate-induced regulation of the human colonic monocarboxylate transporter, MCT1[J]. Journal of Physiology, 2002, 539(2): 361-371 [43] Schilderink R, Verseijden C, Seppen J, Muncan V, van den Brink G R, Lambers T T, van Tol E A, de Jonge W J. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2016, 310(11): 1138-1146 [44] Borthakur A, Priyamvada S, Kumar A, Natarajan A A, Gill R K, Alrefai W A, Dudeja P K.A novel nutrient sensing mechanism underlies substrate-induced regulation of monocarboxylate transporter-1[J]. American Journal of Physiology, 2012, 303(10): 1126-1133 [45] Borthakur A, Saksena S, Gill R K, Alrefai W A, Ramaswamy K, Dudeja P K.Regulation of monocarboxylate transporter 1 (MCT1) promoter by butyrate in human intestinal epithelial cells: Involvement of NF-κB pathway[J]. Journal of Cellular Biochemistry, 2008, 103(5): 1452-1463 [46] Borthakur A, Gill R K, Hodges K, Ramaswamy K, Hecht G, Dudeja P K.Enteropathogenic [47] Thibault R, De C P, Daly K, Bourreille A, Cuff M, Bonnet C, Mosnier J F, Galmiche J P, Shirazi-Beechey S, Segain J P.Down-regulation of the monocarboxylate transporter 1 is involved in butyrate deficiency during intestinal inflammation[J]. Gastroenterology, 2007, 133(6): 1916-1927 [48] de Oliveira A T, Pinheiro C, Longatto-Filho A, Brito M J, Martinho O, Matos D, Carvalho A L, Vazquez Ⅴ L, Silva T B, Scapulatempo C, Saad S S, Reis R M. Co-expression of monocarboxylate transporter 1 (MCT1) and its chaperone (CD147) is associated with low survival in patients with gastrointestinal stromal tumors (GISTs)[J]. Journal of Bioenergetics and Biomembranes, 2012, 44(1): 171-178 [49] Thibault R, Blachier F, Darcy-Vrillon B, de Coppet P, Bourreille A, Segain JP. Butyrate utilization by the colonic mucosa in inflammatory bowel diseases: A transport deficiency[J]. Inflammatory Bowel Diseases, 2010, 16(4): 684-695 [50] Harris R A, Tindale L, Cumming R C.Age-dependent metabolic dysregulation incancer and Alzheimer’s disease[J]. Biogerontology, 2014, 15: 559-577 [51] Chowers Y, Cahalon L, Lahav M, Schor H, Tal R, Bar-Meir S, Levite M.Somatostatin through its specific receptor inhibits spontaneous and TNF-alpha- and bacteria-induced IL-8 and IL-1 beta secretion from intestinal epithelial cells[J]. Journal of Immunology, 2000, 165(6): 2955-2961 [52] Jin K Z, Zhou H P, Zhang J, Wang W J, Sun Y P, Ruan C P, Hu Z Q, Wang Y.Systematic review and meta-analysis of somatostatin analogues in the prevention of postoperative complication after pancreaticoduodenectomy[J]. Digestive Surgery, 2015, 32(3):196-207 [53] Saksena S, Theegala S, Bansal N, Gill R K, Tyagi S, Alrefai W A, Ramaswamy K, Dudeja P K.Mechanisms underlying modulation of monocarboxylate transporter 1 (MCT1) by somatostatin in human intestinal epithelial cells[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2009, 297(5): 878-885 [54] Buyse M, Sitaraman S Ⅴ, Liu X, Bado A, Merlin D.Luminal leptin enhances CD147/MCT-1-mediated uptake of butyrate in the human intestinal cell line Caco2-BBE[J]. Journal of Biological Chemistry, 2002, 277(31): 28182-28190 [55] Wang C H, Xu H, Chen H C, Li J, Zhang B, Tang C W, Ghishan F K.Somatostatin stimulates intestinal NHE8 expression via p38 MAPK pathway[J]. American Journal of Physiology and Cell Physiology, 2011, 300(2): 375-382 [56] Sobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, Laigneau J P, Attoub S, Lehy T, Henin D, Mignon M, Lewin M J.Leptin secretion and leptin receptor in the human stomach[J]. Gut, 2000, 47(2): 178-183 [57] Enoki T, Yoshida Y, Lally J, Hatta H, Bonen A.Testosterone increases lactate transport, monocarboxylate transporter (MCT) 1 and MCT4 in rat skeletal muscle[J]. The Journal of Physiology,2006, 577(1): 433-43 [58] Aveseh M, Nikooie R, Aminaie M.Exerciseinduced changes in tumour LDH-B and MCT1 expression are modulated by oestrogen-related receptor alpha in breast cancer-bearing BALB/c mice[J]. The Journal of Physiology, 2015, 593(12): 2635-2648 [59] Cao J, Ng M, Felmlee M A.Sex hormones regulate rat hepatic monocarboxylate transporter expression and membrane trafficking[J]. Journal of Pharmacy and Pharmaceutical Sciences, 2017, 20(1): 435-444 |
[1] | SHI Zongyong, LIU Xuan, LU Chao, GUO Junpei, XU Dongmei, ZHAO Juanli, YUAN Jianqin. Effect of Genetically Modified Soybean GTS40-3-2 on Major Organs and Reproductive Functions in Offspring Male Rats [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2821-2829. |
[2] | TAO Peng, ZHAO Yanting, YUE Zhichen, LEI Juanli, LI Biyuan. Identification of mRNA Transport of BoSVP in Grafted Cabbage and It's Effect on Transcription Expression of SVP in Rootstocks [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2234-2240. |
[3] | SHEN Qi, Mahebali Tuohutaerhan, CAO Yeqing, LIU Fengjuan, TAO Yongxia, WANG Cheng. Study on the Distribution Characteristics of Mineral Elements and Their Regulatory Mechanisms in Sweet Melon [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2305-2310. |
[4] | HUANG Jie, BAI Zhigang, ZHONG Chu, JIN Qianyu, ZHU Lianfeng, CAO Xiaochuang, ZHU Chunquan, ZHANG Junhua. Physiological and Molecular Mechanisms of Salt Stress Tolerance in Rice [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(6): 1359-1367. |
[5] | LI Chenyang, KONG Xiangqiang, DONG Hezhong. Nitrate Uptake, Transport and Signaling Regulation Pathways [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 982-993. |
[6] | WANG Yan, WANG Qi, LIU Yang. Transcription Factor Fgap1 Regulates Tri Gene Expression and Deoxynivalenol (DON) Biosynthesis in Fusarium graminearum [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 714-720. |
[7] | LIANG Min, XU Xing, DING Xiangzhen, LI Zhiying, ZHENG Rui, YANG Shujuan, MAO Guilian. Effects of Salt Stress on Na+Uptake and Expression of Na+/H+Transporter and H+-ATPase Genes in Lycium barbarum L. [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 745-751. |
[8] | ZHANG Xiaofang, QIAO Yake, WANG Bingbing, XU Yan, ZHANG Kai, LI Guilan. Sequence Analysis of ABC Transporter Transcriptome in Wild Soybean Under the Drought Stress [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(8): 1474-1482. |
[9] | TAO Peng, ZHAO Yanting, ZHONG Xinmin, YUE Zhichen, LEI Juanli, LI Biyuan. Analysis of mRNA Long-distance Transport of Chinese Flowering Cabbage BrAGL24 in Heterograft [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 880-887. |
[10] | WANG Jingjing, LEI Jianjun, LIANG Chengliang, ZHANG Zikun, CHANG Peipei, ZHANG Zhanyu, HE Hongjun. Progress on the Study of Translationally Controlled Tumor Protein in Plants [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(4): 696-704. |
[11] | LI Shengsheng, JIN Yichao. Effect of Quality and Shelf Life of Yak Meat Under Different Static Transport Temperature [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1549-1555. |
[12] | CHEN Gongkai, WANG Xiaoyan, KANG Huajing, SUN Ji. Effect of Different NaHSO3 Concentrations on Gas Exchange and Fluorescence Parameters in Beans and Maize [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(2): 379-385. |
[13] | ZHANG Yingcai, SU Weidong, JING Hongxia, CAO Jinxia. Physiological Characteristic of Postphloem Sugar Transport in Fruit of Ziziphus jujuba Mill cv.Lingwuchangzao [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(1): 171-177. |
[14] | YU Tianyi, SUN Xuewu, WANG Caibin, SUN Xiushan, FENG Hao, ZHENG Yongmei, WU Zhengfeng, SHEN Pu, ZHENG Yaping. Study on Characteristics of Phosphorus Transport and Phosphorus Use Efficiency in Peanut With Different Genotypes [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(9): 1813-1820. |
[15] | DAI Lingyan, TANG Chengrui, YIN Kuide, DU Jidao, LI Ming, FU Nan. Cloning, Expression and Bioinformatics Analysis of SUT1 Gene in Sweet Sorghum [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(12): 2276-2286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||