[1] 杨静. 苦瓜耐低温机制研究[D]. 武汉: 华中农业大学, 2008: 14-20 [2] 杜文丽, 陈中钐, 许端祥, 高山, 温庆放. 基于Illumina HiSeq 2500 测序技术对高温胁迫下苦瓜叶片转录组特性分析[J]. 分子植物育种, 2019, 17(1): 377-387 [3] 陈小凤, 黄如葵, 黄玉辉, 冯诚诚, 黄熊娟, 梁家作. 低温胁迫下苦瓜苗期生理变化与耐冷性评价的关系分析[J]. 南方农业学报, 2017, 7: 111-115 [4] 黄玉辉, 梁家作, 黄熊娟, 冯诚诚, 黄如葵, 陈小凤. 低温胁迫下苦瓜幼苗差异蛋白的表达与分析[J]. 南方农业学报, 2017, 48(4): 594-600 [5] 王华, 杨建峰. 植物抗寒基因工程研究进展[J]. 现代农业科技, 2007, 23: 117-120 [6] Eric J S, Sarah J G, Michael F T.Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(3):1035-1040 [7] 张博. 低温胁迫下中国野生山葡萄和欧洲葡萄的转录组分析[D]. 杨凌:西北农林科技大学, 2018: 40-50 [8] Gilmour S J, Sebolt A M, Salazar M P, Everard J D, Thomashow M F.Overexpression of the arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation[J]. Plant Physiology, 2000, 124(4): 1854-1865 [9] 周丽霞, 曹红星. 低温胁迫下油棕WRKY转录因子基因的表达特性分析[J]. 南方农业学报, 2018(8): 1490-1497 [10] 李佳. 马铃薯MYB转录因子家族的生物信息学分析及低温胁迫下的表达分析[D]. 西宁: 青海大学, 2018: 1-59 [11] 黄超. 不同甜瓜品种在低温胁迫下转录组分析[D]. 哈尔滨: 东北农业大学, 2018: 1-38 [12] 廉洁, 张喜春, 谷建田. 转录组学及其在蔬菜学上应用研究进展[J]. 中国农学通报, 2015, 31(8): 118-122 [13] Chen J H, Tian Q A, Pang T, Jiang L B, Wu R L, Xia X L, Yin W L.Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica[J]. BMC Genomics, 2014, 15(1): 326 [14] Selvarajan D, Mohan C, Dhandapani Ⅴ, Nerkar G, Jayanarayanan A N, Mohanan M Ⅴ, Murugan N, Kaur L, Chennappa M, Kumar R, Meena M, Ram B, Chinnaswamy A.Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation[J]. 3 Biotech, 2018, 8(4): 195 [15] 李改珍,齐仙惠,李梅兰,赵军良,王秀英.大白菜花发育不同时期的转录组研究[J]. 山西农业大学学报(自然科学版), 2017,37(10):701-705 [16] 林珲, 薛珠政, 李永平, 李大忠, 刘建汀, 朱海生. 青梗花椰菜和白梗花椰菜转录组分析[J]. 核农学报, 2018, 32(9): 1708-1720 [17] 何敏. 基于转录组测序的黄瓜涩味相关基因挖掘与功能分析[D]. 扬州: 扬州大学, 2017: 4-45 [18] 邹凯茜, 商桑, 田丽波, 朱国鹏, 周萌萌, 潘琼玉. 低温胁迫对嫁接苦瓜幼苗渗透调节物质的影响[J]. 热带作物学报, 2018, 39(8): 68-74 [19] 陈小凤, 黄如葵, 黄玉辉, 冯诚诚, 黄熊娟, 梁家作. 低温胁迫下苦瓜苗期生理变化与耐冷性评价的关系分析[J]. 南方农业学报, 2017(7): 111-115 [20] 高山, 林碧英, 许端祥, 钟开勤. 低温胁迫苦瓜细胞膜稳定性的配合力和遗传参数分析[J]. 福建农业科技, 2006(4): 27-29 [21] 陆涵,低温胁迫下火龙果生理响应特征及转录组差异基因分析[D]. 成都: 四川农业大学, 2017: 9-10 [22] Trapnell C, Williams, B A, Pertea G, Mortazavi A, Kwan G, Van Baren M J. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5): 511-515 [23] Anders S, Huber W.Differential expression analysis for sequence count data[J]. Genome Biology, 2010, 11(10): R106 [24] Livak K J.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method[J]. Methods, 2001, 25(4):402-408 [25] 李蕾, 包岩, 王佳欣, 陈殿元, 庄巍. 低温胁迫下粳稻芽苗期生理变化及耐冷性评价方法[J]. 农业与技术, 2018, 38(22): 28 [26] 戴忠仁. 黄瓜耐冷生理变化规律及相关基因转录组测序和表达分析[D]. 哈尔滨: 东北农业大学, 2015: 1-83 [27] 刘辉. 番茄耐寒种质低温胁迫下的转录组分析及相关基因功能鉴定[D]. 武汉: 华中农业大学, 2012: 1-107 [28] Xin H, Zhu W, Wang L, Xiang Y, Fang L, Li J.Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress[J]. PLoS One, 2013, 8(3):e58740 [29] Yao P F, Sun Z, Li C L, Zhao X R, Li M F, Deng R Y, Huang Y J, Zhao H X, Chen H, Wu Q.Overexpression of, Fagopyrum tataricum FtbHLH2, enhances tolerance to cold stress in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2018, 125: 85-94 [30] 张新宇, 林书岱, 张涛, 裴柳玲, 唐清, 刘峰. 棉花C2H2类型锌指蛋白基因GhSIZ1的克隆及表达分析[J]. 棉花学报, 2015, 27(3): 189-197 [31] Singh S, Grover A, Nasim M.Biofuel Potential of Plants Transformed Genetically with NAC Family Genes[J]. Frontiers in Plant Science, 2016, 7(268): 22 [32] Du C F, Hu K N, Xian S S, Liu C Q, Fan J C, Tu J X, Fu T D.Dynamic transcriptome analysis reveals AP2/ERF transcription factors responsible for cold stress in rapeseed ( Brassica napus L.)[J]. Molecular Genetics and Genomics, 2016, 291(3): 1053-1067 [33] Huda K M, Banu M S, Garg B, Tula S, Tuteja R, Tuteja. OsACA6, a P-type IIB Ca2 ATPase promotes salinity and drought stress tolerance in tobacco by ROS scavenging and enhancing the expression of stress-responsive genes[J]. Plant Journal for Cell and Molecular Biology, 2013, 76(6): 997-1015 [34] 张美萍, 杨珺凯, 孙明哲, 贾博为, 孙晓丽. 基于家族分析的苜蓿逆境应答Ca2+ATPase家族基因筛选与鉴定[J]. 植物生理学报, 2017, 53(2): 198-208 |