Journal of Nuclear Agricultural Sciences ›› 2022, Vol. 36 ›› Issue (2): 422-434.DOI: 10.11869/j.issn.100-8551.2022.02.0422
• Isotope Tracer Technique·Ecology and Environment·Physiology • Previous Articles Next Articles
BAN Wenhui(), WANG Xingqiang, LIU Qiangjuan, SUN Jianbo, LYU Kaiyuan, KANG Jianhong*(
)
Received:
2021-03-22
Accepted:
2021-06-23
Online:
2022-02-10
Published:
2022-01-17
Contact:
KANG Jianhong
班文慧(), 王星强, 柳强娟, 孙建波, 吕开源, 康建宏*(
)
通讯作者:
康建宏
作者简介:
班文慧,女,主要从事作物生态生理研究。E-mail: 846451970@qq.com
基金资助:
BAN Wenhui, WANG Xingqiang, LIU Qiangjuan, SUN Jianbo, LYU Kaiyuan, KANG Jianhong. Effects of Nitrogen Application Rate on Potato Yield, Starch Content and Related Enzyme Metabolic During Tuber Formation After High Temperature Stress[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 422-434.
班文慧, 王星强, 柳强娟, 孙建波, 吕开源, 康建宏. 施氮对块茎形成期高温胁迫后马铃薯块茎产量、淀粉含量和相关酶代谢活性的影响[J]. 核农学报, 2022, 36(2): 422-434.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2022.02.0422
指标Index | 因素 Factor | 开花后天数 Days after flowering/d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
19 | 34 | 48 | 63 | 75 | |||||||
总淀粉含量 Total starch content | 高温 | 260.58** | 40.08** | 425.66** | 393.82** | 424.83** | |||||
施氮水平 | 63.18** | 86.24** | 679.31** | 420.68** | 711.62** | ||||||
高温×施氮水平 | 5.84 | 41.49 | 7.86** | 3.34* | 2.20* | ||||||
支链淀粉含量 Amylopectin content | 高温 | 248.76** | 73.25** | 278.92** | 297.41** | 403.61** | |||||
施氮水平 | 54.21** | 416.33** | 433.27** | 421.82** | 752.10** | ||||||
高温×施氮水平 | 5.13 | 2.44 | 6.73** | 2.15* | 2.58 | ||||||
直链淀粉含量 Amylose content | 高温 | 256.42** | 13.26* | 58.64** | 88.39** | 42.29** | |||||
施氮水平 | 35.72** | 58.21** | 126.43** | 97.41** | 51.33** | ||||||
高温×施氮水平 | 0.431 | 0.562 | 3.473* | 4.362* | 0.245* | ||||||
AGP活性 AGP activity | 高温 | 914.00** | 24.35* | 10.40* | 1.80 | 17.71* | |||||
施氮水平 | 74.30** | 98.02** | 177.83** | 71.61** | 48.043** | ||||||
高温×施氮水平 | 2.82* | 0.22 | 42.59* | 8.97* | 4.11* | ||||||
UGP活性 UGP activity | 高温 | 4.21 | 9.36* | 61.27** | 356.20** | 25.00** | |||||
施氮水平 | 193.38** | 107.79** | 113.07** | 77.25** | 78.68** | ||||||
高温×施氮水平 | 0.22 | 2.32* | 9.43* | 4.15* | 6.13** | ||||||
SSS活性 SSS activity | 高温 | 248.13** | 504.10** | 70.45** | 48.19** | 160.69** | |||||
施氮水平 | 131.08** | 903.43** | 43.31** | 1843.10** | 49.43** | ||||||
高温×施氮水平 | 34.56** | 41.95** | 4.19* | 9.14* | 3.59 | ||||||
GBSS活性 GBSS activity | 高温 | 1 404.86** | 1 186.21** | 494.79** | 914.52** | 18.51** | |||||
施氮水平 | 546.36** | 1 481.07** | 729.51** | 481.31** | 94.22** | ||||||
高温×施氮水平 | 3.49* | 9.84** | 33.35** | 47.99** | 9.49** | ||||||
SBE活性 SBE activity | 高温 | 211.79** | 933.72** | 367.85** | 565.22** | 92.09** | |||||
施氮水平 | 127.05** | 138.37** | 218.66** | 202.29** | 64.81** | ||||||
高温×施氮水平 | 27.65 | 33.03** | 6.92** | 21.04** | 21.31** |
Table 1 Analysis of the interaction between temperature and nitrogen application level on potato tuber starch content and key enzyme activity of starch synthesis (F value)
指标Index | 因素 Factor | 开花后天数 Days after flowering/d | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
19 | 34 | 48 | 63 | 75 | |||||||
总淀粉含量 Total starch content | 高温 | 260.58** | 40.08** | 425.66** | 393.82** | 424.83** | |||||
施氮水平 | 63.18** | 86.24** | 679.31** | 420.68** | 711.62** | ||||||
高温×施氮水平 | 5.84 | 41.49 | 7.86** | 3.34* | 2.20* | ||||||
支链淀粉含量 Amylopectin content | 高温 | 248.76** | 73.25** | 278.92** | 297.41** | 403.61** | |||||
施氮水平 | 54.21** | 416.33** | 433.27** | 421.82** | 752.10** | ||||||
高温×施氮水平 | 5.13 | 2.44 | 6.73** | 2.15* | 2.58 | ||||||
直链淀粉含量 Amylose content | 高温 | 256.42** | 13.26* | 58.64** | 88.39** | 42.29** | |||||
施氮水平 | 35.72** | 58.21** | 126.43** | 97.41** | 51.33** | ||||||
高温×施氮水平 | 0.431 | 0.562 | 3.473* | 4.362* | 0.245* | ||||||
AGP活性 AGP activity | 高温 | 914.00** | 24.35* | 10.40* | 1.80 | 17.71* | |||||
施氮水平 | 74.30** | 98.02** | 177.83** | 71.61** | 48.043** | ||||||
高温×施氮水平 | 2.82* | 0.22 | 42.59* | 8.97* | 4.11* | ||||||
UGP活性 UGP activity | 高温 | 4.21 | 9.36* | 61.27** | 356.20** | 25.00** | |||||
施氮水平 | 193.38** | 107.79** | 113.07** | 77.25** | 78.68** | ||||||
高温×施氮水平 | 0.22 | 2.32* | 9.43* | 4.15* | 6.13** | ||||||
SSS活性 SSS activity | 高温 | 248.13** | 504.10** | 70.45** | 48.19** | 160.69** | |||||
施氮水平 | 131.08** | 903.43** | 43.31** | 1843.10** | 49.43** | ||||||
高温×施氮水平 | 34.56** | 41.95** | 4.19* | 9.14* | 3.59 | ||||||
GBSS活性 GBSS activity | 高温 | 1 404.86** | 1 186.21** | 494.79** | 914.52** | 18.51** | |||||
施氮水平 | 546.36** | 1 481.07** | 729.51** | 481.31** | 94.22** | ||||||
高温×施氮水平 | 3.49* | 9.84** | 33.35** | 47.99** | 9.49** | ||||||
SBE活性 SBE activity | 高温 | 211.79** | 933.72** | 367.85** | 565.22** | 92.09** | |||||
施氮水平 | 127.05** | 138.37** | 218.66** | 202.29** | 64.81** | ||||||
高温×施氮水平 | 27.65 | 33.03** | 6.92** | 21.04** | 21.31** |
Fig.2 Effects of high temperature stress and nitrogen application on starch content of potato tuber Note: A: High temperature treatment in 2019. B: Natural temperature treatment in 2019. C: High temperature treatment in 2020.D: Natural temperature treatment in 2020. The same as following.
年份 Year | 温度 Temperature | 施氮 水平 Nitrogen level | 大薯数 Number of big potatoes /(个/穴) | 中薯数 Number of middle potatoes /(个/穴) | 小薯数 Number of small potatoes /(个/穴) | 大薯率 Big potato rate/% | 中薯率 Medium potato rate/% | 小薯率 Small potato rate/% | 产量 Yield /(t·hm-2) |
---|---|---|---|---|---|---|---|---|---|
2019 | T1 | N0 | 2.47±0.14a | 1.58±0.06c | 2.84±0.37b | 55.00±0.03ab | 15.75±0.03b | 15.25±0.03a | 33.88±0.75c |
N1 | 2.73±0.27a | 1.78±0.22bc | 2.99±0.16a | 70.25±0.02b | 19.25±0.01a | 7.99±0.02ab | 36.98±0.45b | ||
N2 | 3.21±0.16a | 1.84±0.12b | 2.51±0.36b | 72.00±0.05a | 16.75±0.01ab | 8.25±0.01b | 40.49±0.40a | ||
N3 | 2.84±0.35a | 2.20±0.14a | 3.06±0.23a | 68.00±0.01ab | 18.25±0.01ab | 11.75±0.01ab | 39.20±0.87a | ||
T2 | N0 | 3.14±0.91b | 1.83±0.26b | 3.61±0.08a | 70.50±0.07a | 12.75±0.01a | 16.75±0.02a | 37.79±0.61c | |
N1 | 3.16±0.14a | 2.33±0.20a | 2.89±0.13b | 74.75±0.01a | 20.00±0.01ab | 5.25±0.01c | 40.96±0.83b | ||
N2 | 3.39±0.56a | 2.16±0.12a | 1.84±0.18bc | 78.00±0.02a | 17.75±0.02b | 4.25±0.01b | 43.95±0.84a | ||
N3 | 3.40±0.21a | 2.02±0.06b | 3.23±0.13b | 76.00±0.05a | 19.25±0.01ab | 6.75±0.01bc | 43.50±0.93ab | ||
2020 | T1 | N0 | 2.31±0.22a | 1.45±0.35b | 2.12±0.41c | 58.30±0.12a | 27.67±0.08ab | 11.03±0.04ab | 30.91±0.05b |
N1 | 2.41±0.34a | 2.42±0.18bc | 3.40±0.41a | 66.76±0.08ab | 18.13±0.25a | 9.11±0.09a | 32.53±0.17a | ||
N2 | 3.58±0.23a | 2.20±0.22a | 2.90±0.02a | 75.69±0.19bc | 16.38±0.46a | 7.93±0.09ab | 38.28±0.26a | ||
N3 | 3.51±0.35a | 1.81±0.31c | 2.31±0.03ab | 66.55±0.24a | 23.92±0.40a | 9.54±0.12ab | 33.54±0.09ab | ||
T2 | N0 | 2.87±0.95ab | 1.21±0.42a | 3.71±0.08c | 65.70±0.13b | 25.07±0.05a | 9.24±0.08a | 35.33±0.18a | |
N1 | 2.92±0.25b | 2.11±0.08c | 2.61±0.26b | 72.91±0.09ac | 19.22±0.32ab | 7.90±0.13a | 36.30±0.21a | ||
N2 | 4.00±0.31ab | 1.01±0.19a | 3.82±0.05ac | 79.77±0.15a | 15.94±0.26a | 4.29±0.12b | 41.54±0.08ab | ||
N3 | 3.80±0.22ab | 2.30±0.50a | 3.71±0.09a | 79.22±0.32ab | 11.95±0.02c | 8.82±0.15b | 37.33±0.31a |
Table 2 Effects of high temperature and nitrogen application on potato yield and its components
年份 Year | 温度 Temperature | 施氮 水平 Nitrogen level | 大薯数 Number of big potatoes /(个/穴) | 中薯数 Number of middle potatoes /(个/穴) | 小薯数 Number of small potatoes /(个/穴) | 大薯率 Big potato rate/% | 中薯率 Medium potato rate/% | 小薯率 Small potato rate/% | 产量 Yield /(t·hm-2) |
---|---|---|---|---|---|---|---|---|---|
2019 | T1 | N0 | 2.47±0.14a | 1.58±0.06c | 2.84±0.37b | 55.00±0.03ab | 15.75±0.03b | 15.25±0.03a | 33.88±0.75c |
N1 | 2.73±0.27a | 1.78±0.22bc | 2.99±0.16a | 70.25±0.02b | 19.25±0.01a | 7.99±0.02ab | 36.98±0.45b | ||
N2 | 3.21±0.16a | 1.84±0.12b | 2.51±0.36b | 72.00±0.05a | 16.75±0.01ab | 8.25±0.01b | 40.49±0.40a | ||
N3 | 2.84±0.35a | 2.20±0.14a | 3.06±0.23a | 68.00±0.01ab | 18.25±0.01ab | 11.75±0.01ab | 39.20±0.87a | ||
T2 | N0 | 3.14±0.91b | 1.83±0.26b | 3.61±0.08a | 70.50±0.07a | 12.75±0.01a | 16.75±0.02a | 37.79±0.61c | |
N1 | 3.16±0.14a | 2.33±0.20a | 2.89±0.13b | 74.75±0.01a | 20.00±0.01ab | 5.25±0.01c | 40.96±0.83b | ||
N2 | 3.39±0.56a | 2.16±0.12a | 1.84±0.18bc | 78.00±0.02a | 17.75±0.02b | 4.25±0.01b | 43.95±0.84a | ||
N3 | 3.40±0.21a | 2.02±0.06b | 3.23±0.13b | 76.00±0.05a | 19.25±0.01ab | 6.75±0.01bc | 43.50±0.93ab | ||
2020 | T1 | N0 | 2.31±0.22a | 1.45±0.35b | 2.12±0.41c | 58.30±0.12a | 27.67±0.08ab | 11.03±0.04ab | 30.91±0.05b |
N1 | 2.41±0.34a | 2.42±0.18bc | 3.40±0.41a | 66.76±0.08ab | 18.13±0.25a | 9.11±0.09a | 32.53±0.17a | ||
N2 | 3.58±0.23a | 2.20±0.22a | 2.90±0.02a | 75.69±0.19bc | 16.38±0.46a | 7.93±0.09ab | 38.28±0.26a | ||
N3 | 3.51±0.35a | 1.81±0.31c | 2.31±0.03ab | 66.55±0.24a | 23.92±0.40a | 9.54±0.12ab | 33.54±0.09ab | ||
T2 | N0 | 2.87±0.95ab | 1.21±0.42a | 3.71±0.08c | 65.70±0.13b | 25.07±0.05a | 9.24±0.08a | 35.33±0.18a | |
N1 | 2.92±0.25b | 2.11±0.08c | 2.61±0.26b | 72.91±0.09ac | 19.22±0.32ab | 7.90±0.13a | 36.30±0.21a | ||
N2 | 4.00±0.31ab | 1.01±0.19a | 3.82±0.05ac | 79.77±0.15a | 15.94±0.26a | 4.29±0.12b | 41.54±0.08ab | ||
N3 | 3.80±0.22ab | 2.30±0.50a | 3.71±0.09a | 79.22±0.32ab | 11.95±0.02c | 8.82±0.15b | 37.33±0.31a |
[1] |
Barlow K M, Christy B P, O’Leary G J, Riffkin P A, Nuttall J G. Simulating the impact of extreme heat and frost events on wheat crop production: A review[J]. Field Crops Research, 2015, 171(1):109-119
DOI URL |
[2] |
Zhao C, Liu B, Piao S L, Wang X H, Lobell D, Huang Y, Huang M T, Yao Y T, Bassu S, Ciais P, Durand J L, Elliott J, Ewert F, Janssens Ⅰ, Li T, Lin E, Liu Q, Martre P, Müller C, Asseng S. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences, 2017, 114(35):9326-9331
DOI URL |
[3] | 王鹤龄, 张强, 王润元, 吕晓东, 王力, 张镭, 齐月. 气候变化对甘肃省农业气候资源和主要作物栽培格局的影响[J]. 生态学报, 2017, 37(18):6099-6110 |
[4] | 慕宇. 高温对马铃薯块茎淀粉和产量形成的影响机理研究[D]. 银川: 宁夏大学, 2017 |
[5] |
Singh B, Bhardwaj Ⅴ, Kaur K, Kukreja S, Goutam U. Potato periderm is the first layer of defence against biotic and abiotic stresses: A review[J]. Potato Research, 2021, 64(1):131-146
DOI URL |
[6] |
Raja S, Govindakrishnan P M, Chakrabarti S K. A review: A framework for yield improvement in kharif/rainy season potato in the low land tropics[J]. Acta Horticulturae et Regiotecturae, 2020, 23(1):44-55
DOI URL |
[7] | 肖国举, 仇正跻, 张峰举, 马飞, 姚玉璧, 张强, 王润元. 增温对西北半干旱区马铃薯产量和品质的影响[J]. 生态学报, 2015, 35(3):830-836 |
[8] | 冯朋博, 慕宇, 孙建波, 吴佳瑞, 王月宁, 柳强娟, 吴娜, 康建宏. 高温对马铃薯块茎形成期光合及抗氧化特性的影响[J]. 生态学杂志, 2019, 38(9):2719-2726 |
[9] | 王军可, 王亚梁, 陈惠哲, 向镜, 张义凯, 朱德峰, 张玉屏. 灌浆初期高温影响水稻籽粒碳氮代谢的机理[J]. 中国农业气象, 2020, 41(12):774-784 |
[10] | 徐芬芬, 沈文静. 高温胁迫对白玉豆种子萌发和水解酶活性的影响[J]. 中国野生植物资源, 2020, 39(7):27-29 |
[11] | Waraich E A, Ahmad R, Halim A, Aziz T. Alleviation of temperature stress by nutrient management in crop plants: A review[J]. Journal of Soil Science and Plant Nutrition, 2012(12):221-244 |
[12] | 戴云云, 丁艳锋, 王强盛, 李刚华, 刘正辉, 王绍华. 不同施氮水平下稻米品质对日间增温响应的差异[J]. 植物营养与肥料学报, 2009, 15(2):276-282 |
[13] |
闫川, 丁艳锋, 王强盛, 李刚华, 刘正辉, 缪小建, 郑永美, 魏广彬, 王绍华. 穗肥施量对水稻植株形态、群体生态及穗叶温度的影响[J]. 作物学报, 2008, 34(12):2176-2183
DOI |
[14] | 段骅, 傅亮, 剧成欣, 刘立军, 杨建昌. 氮素穗肥对高温胁迫下水稻结实和稻米品质的影响[J]. 中国水稻科学, 2013, 27(6):591-602 |
[15] | 吕文河, 马子竣, 李莹, 白雅梅, 李文霞, 徐学谱. 马铃薯4x-4x和4x-2x杂种后代高世代选系总产和商品薯产量比较[J]. 东北农业大学学报, 2014, 45(10):1-9 |
[16] | 曾凡逵, 赵鑫, 周添红, 刘刚. 双波长比色法测定马铃薯直链/支链淀粉含量[J]. 现代食品科技, 2012, 28(1):119-122 |
[17] | 程方民, 蒋德安, 吴平, 石春海. 早籼稻籽粒灌浆过程中淀粉合成酶的变化及温度效应特征[J]. 作物学报, 2001, 27(2):201-206 |
[18] | 李太贵, 沈波, 陈能, 罗玉坤. Q酶在水稻籽粒垩白形成中作用的研究[J]. 作物学报, 1997, 23(3):338-344 |
[19] | 冯宽. 花后高温对小麦籽粒发育及萌发特性的影响[D]. 石河子: 石河子大学, 2018 |
[20] |
Zhang G D, Tang R M, Niu S Y, Si H J, Yang Q, Bizimungu B, Regan S, Li X Q. Effects of earliness on heat stress tolerance in fifty potato cultivars[J]. American Journal of Potato Research, 2020, 97(12):23-32
DOI URL |
[21] | Boguszewska-Mańkowska D, Gietler M, Nykiel M. Comparative proteomic analysis of drought and high temperature response in roots of two potato cultivars[J]. Plant Growth Regulation: An International Journal on Plant Growth and Development, 2020, 92(2):345-363 |
[22] | 江文文, 尹燕枰, 王振林, 李勇, 杨卫兵, 彭佃亮, 杨东清, 崔正勇, 卢昆丽, 李艳霞. 花后高温胁迫下氮肥追施后移对小麦产量及旗叶生理特性的影响[J]. 作物学报, 2014, 40(5):942-949 |
[23] |
Ruiz J M, Rivero R M, Garcia P C, Baghour M, Romero L. Role of CaCl2 in nitrate assimilation in leaves and roots of tobacco plants ( Nicotiana tabacum L.)[J]. Plant Science, 1999, 141(2):107-115
DOI URL |
[24] | 李珺, 刘双全, 仇少君, 赵士诚, 徐新朋, 郭腾飞, 张佳佳, 何萍. 典型黑土不同施氮量对马铃薯产量和氮素利用率的影响[J]. 植物营养与肥料学报, 2020, 26(5):850-857 |
[25] | 高春华, 冯波, 曹芳, 李升东, 王宗帅, 张宾, 王峥, 孔令安, 王法宏. 施氮量对花后高温胁迫后小麦同化物积累、转运及产量的影响[J]. 中国农业科学, 2020, 53(21):4365-4375 |
[26] | 张亮. 施磷量及有机替代对马铃薯生长发育及产量的影响[D]. 哈尔滨: 东北农业大学, 2019 |
[27] |
McPherson A E, Jane J. Comparison of waxy potato with other root and tuber starches[J]. Carbohydrate Polymers, 1999, 40(1):57-70
DOI URL |
[28] | 唐宏亮, 石瑛, 田洵, 王金明. 马铃薯淀粉合成关键酶活性变化及对块茎淀粉含量的影响[D]. 哈尔滨: 东北农业大学, 2015 |
[29] |
Han H X, Yang C T, Zhu J H, Zhang L X, Bai Y M, Li E P, Gilbert R. Competition between granule bound starch synthase and Starch branching enzyme in starch biosynjournal[J]. Rice, 2019, 12(1):2-9
DOI URL |
[30] | 吴佳瑞, 康建宏, 柳强娟, 慕宇, 孙建波, 吴娜. 黑膜覆盖对旱地马铃薯块茎淀粉积累和关键酶活性的影响[J]. 核农学报, 2019, 33(12):2482-2491 |
[31] | 李勇. 氮肥施用量对不同淀粉型马铃薯块茎淀粉积累及淀粉合成关键酶基因表达的影响[D]. 哈尔滨: 东北农业大学, 2018 |
[32] | 霍丹丹. 干旱胁迫对马铃薯淀粉积累及关键酶活性的影响[D]. 哈尔滨: 东北农业大学, 2017 |
[33] |
Humayun M K, Liu Q, Xia S T, Wang R Z, Xiao L T. Dynamics of starch synjournal enzymes and their relationship with chalkiness of early Indica rice under different postanjournal temperature regimes[J]. Bangladesh Journal of Agricultural Research, 2009, 44(2):153-162
DOI URL |
[34] | 柳强娟, 康建宏, 吴佳瑞, 孙建波, 马雪莹, 王星强, 坚天才. 施氮量对宁夏旱区马铃薯块茎淀粉形成和产量的影响[J]. 核农学报, 2021, 35(5):1196-1208 |
[1] | ZHOU Shuqian, CHEN Lu, CHEN Huiyun, LI Yongxin, CHEN Gang, LU Guoquan, YANG Huqing. Bioinformatics and Expression Analysis of Alternative Oxidase Genes in Sweetpotato [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 270-281. |
[2] | LIU Lingling, AN Congcong, YE Ximiao, YUAN Jianlong, WANG Yuping, ZHANG Feng. Relationships Among Apical Dominance of Potato Tuber, the Number of Main Stem and Yield Components [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 329-340. |
[3] | HOU Fuyun, CHEN Guiling, DONG Shunxu, XIE Beitao, QIN Zhen, LI Aixian, ZHANG Liming, WANG Qingmei. Comparative Study on Starch Composition, Physicochemical Properties and Noodle Quality of Different Sweet Potato Varieties [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 392-401. |
[4] | DONG Fei, LI Feng, JIA Yaqin, YANG Feng, YAN Qiuyan, LU Jinxiu, SHEN Yanting. Effect of Nitrogen Topdressing Rate on Yield and Quality of Black-Grained Wheat Varieties (Strains) [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 435-444. |
[5] | LI Yulin, XU Chengyu, HU Xue, ZANG Qian, LU Xuanrui, JIANG Min, ZHUANG Hengyang, HUANG Lifen. Soil Nutrient Characteristics of Organic and Conventional Fertilization Models and Effects on Yields and Qualities of Japonica Rice of Different Palatability Types [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 445-455. |
[6] | XIAO Wenfei, CHAI Weiguo, QIU Jieren, XIN Ya, RUAN Songlin. Proteomic Analysis Reveals Mechanisms of Stropharia rugosoannulata Polysaccharides Promoting Kiwifruit Growth and High Temperature Resistance [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 94-104. |
[7] | LI Junxia, QIN Na, ZHU Cancan, WANG Chunyi, DAI Shutao, SONG Yinghui, CHEN Yuxiang. Study on Photosynthetic Characteristics of Foxtail Millet Mutant With Yellow Leaf Colour [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 1964-1970. |
[8] | WEI Lei, LIU Kaimeng, DONG Zhongfu, XU Jingyi, WU Yijiao, XIONG Chunyu, SUN Jie, WANG Caixia. Effect of Humidity on Wound Healing of Sweet Potato [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2111-2117. |
[9] | FANG Yanjie, ZHANG Xucheng, HOU Huizhi, YU Xianfeng, WANG Hongli, MA Yifan, ZHANG Guoping, LEI Kangning. Effects of Tillage and Fertilization on Soil Moisture and Yields of Forage Maize [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2127-2135. |
[10] | WANG Siyang, LI Guanghao, LU Weiping, LU Dalei. Effects of Slow-Release Fertilizer Application Stage on Yield and Quality of Spring-Sown Fresh Waxy Maize [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2136-2144. |
[11] | YANG Xin, FAN Wujing, TANG Zhouping, HE Huyi, LI Lishu. Effects of Different Mulching Cultivation on Bacterial Diversity, Enzyme Activity and Physicochemical Properties of Potato Rhizosphere Soil [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2145-2153. |
[12] | WEN Hongwei, YANG Bin, WANG Dongsheng. Research Progress on Promoting Growth and Drought Resistance of Wheat by Plant Growth Promoting Rhizobacteria [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2194-2203. |
[13] | TIAN Jiachun, TIAN Shilong, LI Shouqiang, GE Xia, LI Mei, CHENG Jianxin. Effects of Low Oxygen and High Carbon Dioxide Storage Environment on Starch-Glucose Metabolism of Potato Tubers [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1832-1840. |
[14] | TIAN Yixin, GAO Fengju, CAO Pengpeng, GAO Qi, XIA Wenrong. Effect of Sowing Date on Agronomic Characters, Quality and Yield of New High Protein Soybean Varieties (lines) [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1900-1907. |
[15] | LI Tingfeng, LI Wen, GUO Junyu, GU Xin. Effects of Soil Conditioners Combined With Microbial Agent on Soil Nutrient and Citrullus lanatus Growth and Yield in Continuous Cropping Gravel Mulch Field [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1923-1930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||