Journal of Nuclear Agricultural Sciences ›› 2022, Vol. 36 ›› Issue (2): 329-340.DOI: 10.11869/j.issn.100-8551.2022.02.0329
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
LIU Lingling1(), AN Congcong2, YE Ximiao2, YUAN Jianlong2, WANG Yuping2, ZHANG Feng2,*(
)
Received:
2021-01-11
Accepted:
2021-03-05
Online:
2022-02-10
Published:
2022-01-17
Contact:
ZHANG Feng
刘玲玲1(), 安聪聪2, 叶夕苗2, 袁剑龙2, 王玉萍2, 张峰2,*(
)
通讯作者:
张峰
作者简介:
刘玲玲,女,主要从事马铃薯遗传育种研究。E-mail: 3257018394@qq.com
基金资助:
LIU Lingling, AN Congcong, YE Ximiao, YUAN Jianlong, WANG Yuping, ZHANG Feng. Relationships Among Apical Dominance of Potato Tuber, the Number of Main Stem and Yield Components[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 329-340.
刘玲玲, 安聪聪, 叶夕苗, 袁剑龙, 王玉萍, 张峰. 马铃薯块茎顶端优势与主茎数及产量组分的相关性[J]. 核农学报, 2022, 36(2): 329-340.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2022.02.0329
编号 Number | 品系编号 Variety number | CIP编号 CIP number | 编号 Number | 品系编号 Variety number | CIP编号 CIP number |
---|---|---|---|---|---|
1 | G39 | CIP 300072.1 | 7 | G22 | CIP 398180.292 |
2 | G42 | CIP 300101.11 | 8 | G58 | CIP 394579.36 |
3 | G79 | CIP 397029.21 | 9 | G65 | CIP 395186.6 |
4 | G59 | CIP 394600.52 | 10 | G14 | CIP 391047.34 |
5 | G106 | CIP 392740.4 | 11 | G56 | CIP 394034.65 |
6 | G123 | CIP 304383.80 | 12 | G120 | CIP 304350.95 |
Table 1 Number of 12 introduced potato advance lines from The International Potato Center
编号 Number | 品系编号 Variety number | CIP编号 CIP number | 编号 Number | 品系编号 Variety number | CIP编号 CIP number |
---|---|---|---|---|---|
1 | G39 | CIP 300072.1 | 7 | G22 | CIP 398180.292 |
2 | G42 | CIP 300101.11 | 8 | G58 | CIP 394579.36 |
3 | G79 | CIP 397029.21 | 9 | G65 | CIP 395186.6 |
4 | G59 | CIP 394600.52 | 10 | G14 | CIP 391047.34 |
5 | G106 | CIP 392740.4 | 11 | G56 | CIP 394034.65 |
6 | G123 | CIP 304383.80 | 12 | G120 | CIP 304350.95 |
Fig.5 The sprouting rate of four kinds apical dominance potato lines (room temperature) Note: Different lowercase letters represent significant differences between different lines at 0.05 level, and different capital letters represent significant differences between different apical dominance classify lines at 0.05 level. The same as following.
Fig.6 Analysis of the sprouting length for four kinds apical dominance types potato lines Note: A: 30 days. B: 60 days. C: 90 days. D: The sprouting length of four kinds apical dominance types potato lines (room temperature).
顶端优势类型 Apical dominance classification | 品系 Line | 主茎数 Number of main stems | 不同数量主茎数占百分比 Percentage of main stems of different quantity | ||
---|---|---|---|---|---|
No.>3 | 2<No.≤3 | No.≤2 | |||
Ⅰ | CIP 300072.1 | 1.50±0.55cdB | - | - | 100 |
CIP 300101.11 | 1.33±0.52dB | - | - | 100 | |
CIP 397029.21 | 1.33±0.52dB | - | - | 100 | |
平均值 | 1.39 | - | - | - | |
Ⅱ | CIP 394600.52 | 2.33±0.52bcA | - | 33.33 | 66.67 |
CIP 392740.4 | 2.50±0.55bA | - | 50 | 50 | |
CIP 304383.80 | 2.00±0.89bcdA | - | 33.33 | 66.67 | |
平均值 | 2.28 | - | - | - | |
Ⅲ | CIP 398180.292 | 3.33±1.03aA | 33.33 | 66.67 | - |
CIP 394579.36 | 1.83±0.41bcdA | - | - | 100 | |
CIP 395186.6 | 1.67±0.52bcdA | - | - | 100 | |
平均值 | 2.28 | - | - | - | |
Ⅳ | CIP 391047.34 | 3.83±0.75aA | 66.67 | 33.33 | - |
CIP 394034.65 | 1.50±0.55cdA | - | - | 100 | |
CIP 304350.95 | 1.83±0.75bcdA | - | 16.67 | 83.33 | |
平均值 | 2.39 | - | - | - |
Table 2 The number of main stem in filed of four kinds apical dominance types potato lines
顶端优势类型 Apical dominance classification | 品系 Line | 主茎数 Number of main stems | 不同数量主茎数占百分比 Percentage of main stems of different quantity | ||
---|---|---|---|---|---|
No.>3 | 2<No.≤3 | No.≤2 | |||
Ⅰ | CIP 300072.1 | 1.50±0.55cdB | - | - | 100 |
CIP 300101.11 | 1.33±0.52dB | - | - | 100 | |
CIP 397029.21 | 1.33±0.52dB | - | - | 100 | |
平均值 | 1.39 | - | - | - | |
Ⅱ | CIP 394600.52 | 2.33±0.52bcA | - | 33.33 | 66.67 |
CIP 392740.4 | 2.50±0.55bA | - | 50 | 50 | |
CIP 304383.80 | 2.00±0.89bcdA | - | 33.33 | 66.67 | |
平均值 | 2.28 | - | - | - | |
Ⅲ | CIP 398180.292 | 3.33±1.03aA | 33.33 | 66.67 | - |
CIP 394579.36 | 1.83±0.41bcdA | - | - | 100 | |
CIP 395186.6 | 1.67±0.52bcdA | - | - | 100 | |
平均值 | 2.28 | - | - | - | |
Ⅳ | CIP 391047.34 | 3.83±0.75aA | 66.67 | 33.33 | - |
CIP 394034.65 | 1.50±0.55cdA | - | - | 100 | |
CIP 304350.95 | 1.83±0.75bcdA | - | 16.67 | 83.33 | |
平均值 | 2.39 | - | - | - |
性状 Trait | 变异来源 Source of variation | 自由度 df | 平方和 Sum of square | 均方 Mean squares | F检验 F test | P值 P value |
---|---|---|---|---|---|---|
小区产量 Plot yield | 组间 | 106.462 | 3 | 35.487 | 2.037 | 0.141 |
组内 | 348.359 | 20 | 17.418 | |||
总数 | 454.821 | 23 | ||||
小区大薯产量 Plot yield of large tuber | 组间 | 78.506 | 3 | 26.169 | 2.268 | 0.112 |
组内 | 230.775 | 20 | 11.539 | |||
总数 | 309.282 | 23 | ||||
小区小薯产量 Plot yield of small tuber | 组间 | 3.393 | 3 | 1.131 | 0.744 | 0.538 |
组内 | 30.398 | 20 | 1.520 | |||
总数 | 33.791 | 23 | ||||
单株产量 Yield of tuber per plant | 组间 | 2.268 | 3 | 0.756 | 2.358 | 0.079 |
组内 | 21.800 | 68 | 0.321 | |||
总数 | 24.067 | 71 | ||||
单株大薯产量 Yield of large tuber per plant | 组间 | 2.378 | 3 | 0.793 | 2.515 | 0.066 |
组内 | 21.434 | 68 | 0.315 | |||
总数 | 23.812 | 71 | ||||
单株小薯产量 Yield of small tuber per plant | 组间 | 0.053 | 3 | 0.018 | 2.941 | 0.039 |
组内 | 0.411 | 68 | 0.006 | |||
总数 | 0.464 | 71 | ||||
单株结薯数 Number of tuber per plant | 组间 | 347.819 | 3 | 115.940 | 7.566 | 0.000 |
组内 | 1 042.056 | 68 | 15.324 | |||
总数 | 1 389.875 | 71 | ||||
单株大薯数 Number of large tuber per plant | 组间 | 189.444 | 3 | 63.148 | 6.692 | 0.001 |
组内 | 641.667 | 68 | 9.436 | |||
总数 | 831.111 | 71 | ||||
单株小薯数 Number of small tuber per plant | 组间 | 45.153 | 3 | 15.051 | 3.106 | 0.032 |
组内 | 329.500 | 68 | 4.846 | |||
总数 | 374.653 | 71 | ||||
主茎数 Number of main stem | 组间 | 11.722 | 3 | 3.907 | 5.132 | 0.003 |
组内 | 51.778 | 68 | 0.761 | |||
总数 | 63.500 | 71 |
Table 3 Variance analysis of the number of main stem, yield component in potato lines
性状 Trait | 变异来源 Source of variation | 自由度 df | 平方和 Sum of square | 均方 Mean squares | F检验 F test | P值 P value |
---|---|---|---|---|---|---|
小区产量 Plot yield | 组间 | 106.462 | 3 | 35.487 | 2.037 | 0.141 |
组内 | 348.359 | 20 | 17.418 | |||
总数 | 454.821 | 23 | ||||
小区大薯产量 Plot yield of large tuber | 组间 | 78.506 | 3 | 26.169 | 2.268 | 0.112 |
组内 | 230.775 | 20 | 11.539 | |||
总数 | 309.282 | 23 | ||||
小区小薯产量 Plot yield of small tuber | 组间 | 3.393 | 3 | 1.131 | 0.744 | 0.538 |
组内 | 30.398 | 20 | 1.520 | |||
总数 | 33.791 | 23 | ||||
单株产量 Yield of tuber per plant | 组间 | 2.268 | 3 | 0.756 | 2.358 | 0.079 |
组内 | 21.800 | 68 | 0.321 | |||
总数 | 24.067 | 71 | ||||
单株大薯产量 Yield of large tuber per plant | 组间 | 2.378 | 3 | 0.793 | 2.515 | 0.066 |
组内 | 21.434 | 68 | 0.315 | |||
总数 | 23.812 | 71 | ||||
单株小薯产量 Yield of small tuber per plant | 组间 | 0.053 | 3 | 0.018 | 2.941 | 0.039 |
组内 | 0.411 | 68 | 0.006 | |||
总数 | 0.464 | 71 | ||||
单株结薯数 Number of tuber per plant | 组间 | 347.819 | 3 | 115.940 | 7.566 | 0.000 |
组内 | 1 042.056 | 68 | 15.324 | |||
总数 | 1 389.875 | 71 | ||||
单株大薯数 Number of large tuber per plant | 组间 | 189.444 | 3 | 63.148 | 6.692 | 0.001 |
组内 | 641.667 | 68 | 9.436 | |||
总数 | 831.111 | 71 | ||||
单株小薯数 Number of small tuber per plant | 组间 | 45.153 | 3 | 15.051 | 3.106 | 0.032 |
组内 | 329.500 | 68 | 4.846 | |||
总数 | 374.653 | 71 | ||||
主茎数 Number of main stem | 组间 | 11.722 | 3 | 3.907 | 5.132 | 0.003 |
组内 | 51.778 | 68 | 0.761 | |||
总数 | 63.500 | 71 |
性状 Trait | 小区产量 Plot yield | 小区大薯产量 Plot yield of large tuber | 小区小薯产量 Plot yield of small tuber | |||
---|---|---|---|---|---|---|
相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | |
主茎数 Number of main stem | -0.055 | 0.864 | -0.131 | 0.684 | 0.243 | 0.446 |
性状 Trait | 单株产量 Yield of tuber per plant | 单株大薯产量 Yield of large tuber per plant | 单株小薯产量 Yield of small tuber per plant | |||
相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | |
主茎数 Number of main stem | -0.103 | 0.391 | -0.117 | 0.328 | 0.096 | 0.424 |
性状 Trait | 单株结薯数 Number of tuber per plant | 单株大薯数 Number of large tuber per plant | 单株小薯数 Number of small tuber per plant | |||
相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | |
主茎数 Number of main stem | 0.099 | 0.407 | 0.046 | 0.698 | 0.122 | 0.309 |
Table 4 Correlation analysis of the number of main stem and yield component in potato lines
性状 Trait | 小区产量 Plot yield | 小区大薯产量 Plot yield of large tuber | 小区小薯产量 Plot yield of small tuber | |||
---|---|---|---|---|---|---|
相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | |
主茎数 Number of main stem | -0.055 | 0.864 | -0.131 | 0.684 | 0.243 | 0.446 |
性状 Trait | 单株产量 Yield of tuber per plant | 单株大薯产量 Yield of large tuber per plant | 单株小薯产量 Yield of small tuber per plant | |||
相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | |
主茎数 Number of main stem | -0.103 | 0.391 | -0.117 | 0.328 | 0.096 | 0.424 |
性状 Trait | 单株结薯数 Number of tuber per plant | 单株大薯数 Number of large tuber per plant | 单株小薯数 Number of small tuber per plant | |||
相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | 相关性 Pearson correlation | P值 P value | |
主茎数 Number of main stem | 0.099 | 0.407 | 0.046 | 0.698 | 0.122 | 0.309 |
[1] | 潘哲超, 王颖, 徐宁生, 杨涛, 李燕山, 李先平, 白建明, 隋启君. 马铃薯重要农艺性状的相关性、主成分与聚类分析[J]. 分子植物育种, 2020, 18(5):1626-1636 |
[2] |
Barbier F F, Dun E A, Beveridge C A. Apical dominance[J]. Current Biology, 2017, 27(17):R864-R865
DOI URL |
[3] |
Dun E A, Ferguson B J, Beveridge C A. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms?[J]. Plant Physiology, 2006, 142(3):812-819
DOI URL |
[4] |
Buskila Y, Sela N, Teper-bamnolker P, Tal Ⅰ, Shani E, Weinstain R, Gaba V, Tam Y, Lers A, Eshel D. Stronger sink demand for metabolites supports dominance of the apical bud in etiolated growth[J]. Journal of Experimental Botany, 2016, 67(18):5495-5508
PMID |
[5] |
Suttle J C. Physiological regulation of potato tuber dormancy[J]. American Journal of Potato Research, 2004, 81(4):253-262
DOI URL |
[6] |
Young N F, Ferguson B J, Antoniadi I, Bennett M H, Beveridge C A. Conditional auxin response and differential cytokinin profiles in shoot branching mutants[J]. Plant Physiology, 2014, 165(4):1723-1736
DOI URL |
[7] | Mason M G, Ross J J, Babst B A, Wienclaw B N, Beveridge C A. Sugar demand, not auxin, is the initial regulator of apical dominance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16):6092-6097 |
[8] |
Teper-bamnolker P, Buskila Y, Belausov E, Wolf D, Doron-faigenboim A, Ben-dor S, Renier A L, Lers A, Eshel D. Vacuolar processing enzyme activates programmed cell death in the apical meristem inducing loss of apical dominance[J]. Plant, Cell and Environment, 2017, 40(10):2381-2392
DOI URL |
[9] |
Carrera E, Bou J, Garcia-martinez J L, Prat S. Changes in GA 20-oxidase gene expression strongly affect stem length, tuber induction and tuber yield of potato plants[J]. Plant Journal, 2000, 22(3):247-256
PMID |
[10] |
Liu T, Fang H, Liu J, Reid S, Hou J, Zhou T, Tian Z, Song B, Xie C. Cytosolic glyceraldehyde-3-phosphate dehydrogenases play crucial roles in controlling cold-induced sweetening and apical dominance of potato (Solanum tuberosum L.) tubers[J]. Plant, Cell and Environment, 2017, 40(12):3043-3054
DOI URL |
[11] |
Marimus J. The effect of temperature and light during storage of young seed potato on initial plant development at early potato planting[J]. Potato Research, 1992, 35(4):343-354
DOI URL |
[12] |
Herman D J, Knowles L O, Knowles N R. Differential sensitivity of genetically related potato cultivars to treatments designed to alter apical dominance, tuber set and size distribution[J]. American Journal of Potato Research, 2016, 93(4):331-349
DOI URL |
[13] |
Dean C J, Knowles L O, Knowles N R. Efficacy of seed aging and gibberellin treatments for manipulating apical dominance, tuber set and size distribution of cv. Shepody[J]. American Journal of Potato Research, 2018, 95(5):526-538
DOI URL |
[14] | 黄涛, 梅猛, 沈学善, 屈会娟, 杨勇, 杨铮, 余丽萍, 王西瑶. 催芽温度对紫色马铃薯种薯萌芽、植株生长和结薯大小分布的影响[J]. 西南农业学报, 2019, 32(12):2752-2757 |
[15] | 黄涛. 温度、GA3+BR催芽对紫色马铃薯‘黑美人’萌芽、生长和结薯特性的影响[D]. 雅安: 四川农业大学, 2019 |
[16] |
Smeltzer G G, Mackay D C. The influence of gibberellic acid seed treatment and seed spacing on yield and tuber size of potatoes[J]. American Potato Journal, 2008, 40(11):377-380
DOI URL |
[17] |
Iritani W M, Weller L D, Knowles N R. Relationships between stem number, tuber set and yield of Russet Burbank potatoes[J]. American Potato Journal, 2008, 60(6):423-431
DOI URL |
[18] | 张永成, 田丰. 马铃薯试验研究方法[M]. 北京: 中国农业科学技术出版社, 2007: 90-93 |
[19] |
Teper-bamnolker P, Buskila Y, Lopesco Y, Ben-dor S, Holdengreber V, Saad I, Belausov E, Zemach H, Ori N, Lers A, Eshel D. Release of apical dominance in potato tuber is accompanied by programmed cell death in the apical bud meristem[J]. Plant Physiology, 2012, 158(4):2053-2067
DOI PMID |
[20] |
Bisognin D A, Manrique-carpintero N C, Douches D S. QTL analysis of tuber dormancy and sprouting in potato[J]. American Journal of Potato Research, 2018, 95(4):374-382
DOI URL |
[21] |
Hay R K M, Hampson J. Sprout and stem development from potato tubers of differing physiological age: The role of apical dominance[J]. Field Crops Research, 1991, 27(1/2):1-16
DOI URL |
[22] |
Oliveira J S, Brown H E, Gash A, Moot D J. Yield and weight distribution of two potato cultivars grown from seed potatoes of different physiological ages[J]. New Zealand Journal of Crop and Horticultural Science, 2017, 45(2):91-118
DOI URL |
[23] |
Knowles L O, Knowles N R. Optimizing tuber set and size distribution for potato seed (Solanum tuberosum L.) expressing varying degrees of apical dominance[J]. Journal of Plant Growth Regulation, 2016, 35(2):574-585
DOI URL |
[24] |
Blauer J M, Knowles L O, Knowles N R. Manipulating stem number, tuber set and size distribution in specialty potato cultivars[J]. American Journal of Potato Research, 2013, 90(5):470-496
DOI URL |
[25] |
Knowles N R, Knowles L O. Manipulating stem number, tuber set, and yield relationships for northern and southern-grown potato seed lots[J]. Crop Science, 2006, 46(1):284-296
DOI URL |
[26] |
Haverkort A J, Waart M, Bodlaender K B A. Effect of pre-planting temperature and light treatments of seed tubers on potato yield and tuber size distribution[J]. Potato Research, 1990, 33(1):77-88
DOI URL |
[27] |
Collins W B. Analysis of growth in Kennebec with emphasis on the relationship between stem number and yield[J]. American Potato Journal, 2008, 54(1):33-40
DOI URL |
[28] |
Iritani W M, Thornton R, Weller L, O'leary G. Relationships of seed size, spacing, stem numbers to yield of Russet Burbank potatoes[J]. American Potato Journal, 2008, 49(12):463-469
DOI URL |
[29] | 仲义, 梁煊赫, 高华援. 马铃薯主要农艺性状与单株产量的遗传相关及通径系数分析[J]. 吉林农业科学, 2009, 34(2):17-19 |
[30] |
Lynch D R, Kozub G C, Kawchuk L M. The relationship between yield, mainstem number, and tuber number in five maincrop and two early-maturing cultivars[J]. American Journal of Potato Research, 2001, 78(2):83-90
DOI URL |
[1] | XU Weiqing, WANG Xiaolei, LIU Yang, OU-YANG Linjuan, LI Weixing, OU-YANG Qinglan, HE Haohua, ZHU Changlan. QTL Mapping of Rice Cooking Characteristics and Correlation Analysis of Sensory Food Quality [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 66-74. |
[2] | ZHANG Hong, LU Guodong, YUAN Chunchun, LANG Sirui, CHEN Ren. Correlation Between the Accumulations of 9 Steviol Glycosides and the Expressions of the Key Genes Involved in Their Biosynthesis in Stevia rebaudiana [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 75-82. |
[3] | LAI Pufu, TANG Baosha, LI Yibin, WU Li, WENG Minjie, CHEN Junchen. Grey Correlation Analysis for Physical and Nutritional Quality of Hypsizygus marmoreus From Different Drying Methods [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2118-2126. |
[4] | SHI Yangqi, HUANG Xirui, RU Weidong, ZHANY Yu, CHAI Lihong, QIAN Qiongqiu, BAO Jinsong. Difference Analysis of the Physicochemical Properties of Wholemeal Flour From 14 Potato Varieties [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1593-1600. |
[5] | LIU Yangping, WANG Jianhui, LIU Dongmin, LIU Yongle, HUANG Yiqun, WANG Faxiang, LI Xianghong, YU Jian. Optimization of Polyphenols Extraction From Lotus Seed Peel Waste and Its in Vitro Antioxidant Activities [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1376-1384. |
[6] | LI Qiaozhen, JIANG Ning, LI Zhengpeng, SONG Chunyan, LIU Jianyu, DONG Haoran, JIANG Jun, SHANG Xiaodong. Establishment of the Nutritional Quality Evaluation System for Lentinula edodes [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(4): 881-890. |
[7] | ZHAO Qi, GUO Yunhong, YANG Yuzhen, CHEN Lipei, LUO Qing. Alleviation of Copper Stress and Grey Correlation Analysis of Physiological Indexes of Maize Seeding by Soaking With Sucrose [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(3): 753-759. |
[8] | WANG Rui, WANG Meijuan, TANG Fubin, SONG Lili, LOU Heqiang, NI Zhanglin, ZHONG Donglian, MO Runhong. Analysis and Evaluation of Differences in Nutritional Quality of Torreya grandis Seeds in Different Areas of Zhejiang Province [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2578-2588. |
[9] | DENG Yuanjie, LI Tong, FENG Kai, LIU Jiexia, XU Zhisheng, TAN Guofei, XIONG Aisheng. Correlation Analysis Between Carotenoid Cleavage Dioxygenase 7 Gene Expression and Content of β-carotene in Carrot [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(10): 2284-2293. |
[10] | SU Wang. Effects of Mulching on Ridge-Rurrow for Harvesting Rainwater on Starch Granule Morphology, Distribution and Starch Gelatinization Properties of Tuber in Rainfed Potato [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 245-251. |
[11] | ZHANG Shuwen, LIANG Senmiao, ZHENG Xiliang, ZHU Tingting, REN Haiying, QI Xingjiang. Mathematical Model and Correlation Analysis of Chinese Bayberry Fruit Growth Indexes [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 1020-1027. |
[12] | XIONG Jun, YANG Ke, YI Xiaoyu, XU Ke, KUANG Chenghao, ZHANG Zhipeng, CHEN Guoyue, LI Wei. Evaluation of Agronomic Traits of Wheat Multi-spikelet Germplasm 10-A Induced by EMS [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(3): 477-486. |
[13] | YANG Xiaomeng, DU Juan, LI Xia, PU Xiaoying, ZENG Yawen, YANG Jiazhen, Muhammad Kazim Ali, YANG Tao. Genetic Variation of Total Anthocyanin Content in Barley Grains and Its Correlation With Grain Color [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(2): 273-280. |
[14] | XIA Shuo, ZHENG Lijun, SHEN Guanghui, LI Shanshan, LUO Qingying, WU Hejun, LI Meiliang, ZHANG Zhiqing. Effect of High Temperature Sterilization on the Quality Changes of Pre-soaking Soybean Gulten During Shelf Life [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(2): 298-306. |
[15] | LIANG Senmiao, ZHANG Shuwen, ZHENG Xiliang, REN Haiying, ZHU Tingting, QI Xingjiang. Correlation Between Growth Indexes and Fruit Quality Traits of Chinese Bayberry (Myrica rubra Sieb. et Zucc.) [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(4): 751-758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||