Journal of Nuclear Agricultural Sciences ›› 2022, Vol. 36 ›› Issue (2): 302-312.DOI: 10.11869/j.issn.100-8551.2022.02.0302
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
WANG Qian1(), WU Jiahai2, CHEN Ying1, WANG Xiaoli1,*(
)
Received:
2020-11-18
Accepted:
2021-01-07
Online:
2022-02-10
Published:
2022-01-17
Contact:
WANG Xiaoli
通讯作者:
王小利
作者简介:
王茜,女,主要从事牧草逆境生理及分子生物学研究。E-mail: snoopy0729@163.com
基金资助:
WANG Qian, WU Jiahai, CHEN Ying, WANG Xiaoli. Cloning, Differential Expression and Subcellular Localization of FeTOC1 Gene in Tall Fescue[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 302-312.
王茜, 吴佳海, 陈莹, 王小利. 高羊茅FeTOC1基因的克隆、差异表达及亚细胞定位分析[J]. 核农学报, 2022, 36(2): 302-312.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2022.02.0302
处理 Treatments | 光周期模式及处理时间 Photoperiod patterns and treatment time | |
---|---|---|
处理一 The first treatment | 长日照/4周 | |
短日照/4周 | ||
处理二 The second treatment | 长日照/3周 | 连续光照/1周 |
连续黑暗/1周 | ||
短日照/3周 | 连续光照/1周 | |
连续黑暗/1周 | ||
处理三 The third treatment | 遵循外界昼夜长日照/3周 | 继续遵循/1周 |
颠倒外界昼夜/1周 | ||
颠倒外界昼夜长日照/3周 | 继续颠倒/1周 | |
遵循外界昼夜/1周 |
Table 1 Treatments of diverse photoperiod patterns
处理 Treatments | 光周期模式及处理时间 Photoperiod patterns and treatment time | |
---|---|---|
处理一 The first treatment | 长日照/4周 | |
短日照/4周 | ||
处理二 The second treatment | 长日照/3周 | 连续光照/1周 |
连续黑暗/1周 | ||
短日照/3周 | 连续光照/1周 | |
连续黑暗/1周 | ||
处理三 The third treatment | 遵循外界昼夜长日照/3周 | 继续遵循/1周 |
颠倒外界昼夜/1周 | ||
颠倒外界昼夜长日照/3周 | 继续颠倒/1周 | |
遵循外界昼夜/1周 |
引物名称Primer | 引物序列 (5'→3') Primer sequence (5'→3') | 扩增类别 Amplification sort |
---|---|---|
TOC1F2 | AAGTGCTTCAAGATGCTCAA | 核心片段 |
TOC1R2 | CTRAAYTTKGCAAGTGCTGC | |
C341-1 | TGTATCTACGATGCCGTCATTTCA | 3'端快速扩增 |
C341-2 | ACATTCAAGTCATTTGTCAACGCA | |
B463-1(GSP1) | CGGCTTGACCAGGTAC | 5'端快速扩增 |
B463-2(GSP2) | ACAACAACAGAAACATCG | |
B463-3(GSP3) | TGATGATGGGGATGTGGC | |
TOC1-F | GGCCAAAAGAAAACAAAAAT | qRT-PCR |
TOC1-R | GACGACTCAGCAAACCTCAA | |
GAPDH-F | ACCCCTTCATCACCACCGACTAC | 内参基因 |
GAPDH-R | TCCTTCTCGTTGACACCCATGAC |
Table 2 Sequences of primers used for cloning and qRT-PCR amplification of FeTOC1
引物名称Primer | 引物序列 (5'→3') Primer sequence (5'→3') | 扩增类别 Amplification sort |
---|---|---|
TOC1F2 | AAGTGCTTCAAGATGCTCAA | 核心片段 |
TOC1R2 | CTRAAYTTKGCAAGTGCTGC | |
C341-1 | TGTATCTACGATGCCGTCATTTCA | 3'端快速扩增 |
C341-2 | ACATTCAAGTCATTTGTCAACGCA | |
B463-1(GSP1) | CGGCTTGACCAGGTAC | 5'端快速扩增 |
B463-2(GSP2) | ACAACAACAGAAACATCG | |
B463-3(GSP3) | TGATGATGGGGATGTGGC | |
TOC1-F | GGCCAAAAGAAAACAAAAAT | qRT-PCR |
TOC1-R | GACGACTCAGCAAACCTCAA | |
GAPDH-F | ACCCCTTCATCACCACCGACTAC | 内参基因 |
GAPDH-R | TCCTTCTCGTTGACACCCATGAC |
Fig.3 Amino acid sequence alignment of FeTOC1 from Festuca elata with others from hight plants Note: The red and green underlined regions represent the conserved PR and CCT domains, respectively.
Fig.6 FeTOC1 gene expression level under long-(A) and short-days (B) in Festuca elata leaves Note: The black bar on the horizontal axis represents the dark treatment. The white bars represent light treatment. The same as following.
Fig.7 FeTOC1 gene expression level under continual illumination (A and C) and continual darkness (B and D) in Festuca elata leaves after long-(A and B) and short-days (C and D)
[1] |
Huijser P, Schmid M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19):4117-4129
DOI PMID |
[2] |
Yamaguchi A, Abe M. Regulation of reproductive development by non-coding RNA in Arabidopsis: To flower or not to flower[J]. Journal of Plant Research, 2012, 125:693-704
DOI PMID |
[3] |
Srikanth A, Schmid M. Regulation of flowering time: All roads lead to Rome[J]. Cellular and Molecular Life Sciences, 2011, 68(12):2013-2037
DOI PMID |
[4] |
Teotia S, Tang G. To bloom or not to bloom: Role of micro RNAs in plant flowering[J]. Molecular Plant, 2015, 8:359-377
DOI URL |
[5] | Pan R, Xu L, Wei Q, Wu C, Tang W L, Oelmuller R, Zhang W Y. Piriformospora indica promotes early flowering in Arabidopsis through regulation of the photoperiod and gibberellin pathways[J]. PLoS One, 2017, 12(12):e0189791.1-15 |
[6] | 杨丽婷, 刘森. 生物钟翻译后核心振荡机制[J]. 生命的化学, 2016, 36(3):390-396 |
[7] |
Inoue K, Araki T, Endo M. Circadian clock during plant development[J]. Journal of Plant Research, 2018, 131(1):59-66
DOI URL |
[8] | 陈克, 张亮, 彭亚军, 郭亚楠, 赵正洪, 柏连阳, 王立峰. 生物钟调控植物生长代谢过程的相关研究进展[J]. 植物生理学报, 2021, 57(2):313-322 |
[9] |
Gould P D, Locke J C, Larue C, Southern M M, Davis S J, Hanano S, Moyle R, Milich R, Putterill J, Millar A J, Hall A. The molecular basis of temperature compensation in the Arabidopsis circadian clock[J]. The Plant Cell, 2006, 18(5):1177-1187
DOI URL |
[10] |
Matsushika A, Makino S, Kojima M, Mizuno T. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: In-sight into the plant circadian clock[J]. Plant Cell Physiology, 2000, 41(9):1002-1012
DOI URL |
[11] |
Kikis E A, Khanna R, Quail P H. ELF4 is a phytochrome-regulated component of a negative-feedback loop involving the central oscillator components CCA1 and LHY[J]. The Plant Journal, 2005, 44(2):300-313
DOI URL |
[12] |
Alabadí D, Oyama T, Yanovsky M J, Harmon F G, Mas P, Kay S A. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock[J]. Science, 2001, 293(5531):880-883
PMID |
[13] |
Nakamichi N, Kiba T, Henriques R, Mizuno T, Chua N H, Sakakibara H. PSEUDO- RESPONSE REGULATORS 9, 7 and 5 are transcriptional repressors in the Arabidopsis circadian clock[J]. The Plant Cell, 2010, 22(3):594-605
DOI PMID |
[14] |
Liu T L, Newton L, Liu M J, Shiu S H, Farré E M. A G-box-like motif is necessary for transcriptional regulation by circadian pseudo-response regulators in Arabidopsis[J]. Plant Physiology, 2016, 170(2):528-539
DOI URL |
[15] |
Huang W, Perez-Garcia P, Pokhilko A, Millar A J, Antoshechkin I, Riechmann J L, Mas P. Mapping the core of the Arabidopsis circadian clock defines the network structure of the oscillator[J]. Science, 2012, 336(6077):75-79
DOI PMID |
[16] | 李剑峰, 李婷, 贾小平. PRRS家族功能基因的研究进展[J]. 植物遗传资源学报, 2019, 20(6):1399-1407 |
[17] |
Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T. The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana:Ⅰ. Characterization with APRR1 overexpressing plants[J]. Plant Cell Physiology, 2002, 43(1):58-69
DOI URL |
[18] |
Sato E, Nakamichi N, Yamashino T, Mizuno T. Aberrant expression of the Arabidopsis circadian-regulated APRR5 gene belonging to the APRR1/TOC1 quintet results in early flowering and hypersensitiveness to light in early photomorphogenesis[J]. Plant Cell Physiology, 2002, 43(11):1374-1385
DOI URL |
[19] |
Farré E M, Harmer S L, Harmon F G, Yanovsky M J, Kay S A. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock[J]. Current Biology, 2005, 15(1):47-54
PMID |
[20] | 赵淑靓, 景艺峰, 刘青青, 王翠玲. 伪应答调控蛋白在植物光周期途径中的作用[J]. 核农学报, 2018, 32(9):1740-1749 |
[21] |
Baudry A, Ito S, Song Y H, Strait A A, Kiba T, Lu S, Henriques R, Pruneda-Paz J L, Chua N H, Tobin E M, Kay S A, Imaizumi T. F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression[J]. The Plant Cell, 2010, 22(3):606-622
DOI URL |
[22] |
Gendron J M, Pruneda-Paz J L, Doherty C J, Gross A M, Kang S E, Kay S A. Arabidopsis circadian clock protein, TOC1, is a DNA-binding transcription factor[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8):3167-3172
DOI PMID |
[23] | 罗维, 舒健虹, 陈莹, 刘晓霞, 吴佳海, 王小利. 高羊茅生物钟基因FeZTL的克隆、亚细胞定位及表达分析[J]. 植物生理学报, 2020, 56(5):1043-1052 |
[24] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△ct[J]. Methods, 2001, 25(4):402-408
PMID |
[25] |
Strayer C, Oyama T, Schultz T F, Raman R, Somers D E, Mas P, Panda S, Kreps J A, Kay S A. Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog[J]. Science, 2000, 289(5480):768-771
PMID |
[26] |
Makino S, Kiba T, Imamura A, Hanaki N, Nakamura A, Suzuki T, Taniguchi M, Ueguchi C, Sugiyama T, Mizuno T. Genes encoding pseudo-response regulators: Insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana[J]. Plant Cell Physiology, 2000, 41(6):791-803
DOI URL |
[27] |
Wenkel S, Turck F, Singer K, Gissot L, Gourrierec J L, Samach A, Coupland G. CONSTANS and the CCAAT Box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis[J]. The Plant Cell, 2006, 18(11):2971-2984
DOI URL |
[28] |
Mizuno T. His-Asp phosphotransfer signal transduction[J]. The Journal of Biochemistry, 1998, 123(4):555-563
DOI URL |
[29] | 蔡云婷, 贾力, 拓昊苑. 玉米ZmTOC1a、ZmTOC1b基因的克隆、表达及亚细胞定位分析[J]. 华北农学报, 2019, 34(4):24-31 |
[30] |
Matera A G. Nuclear bodies: Multifaceted subdomains of the interchromatin space[J]. Trends in Cell Biology, 1999, 9(8):302-309
PMID |
[31] |
Adams S, Carré I A. Downstream of the plant circadian clock: output pathways for the control of physiology and development[J]. Essays in Biochemistry, 2011, 49:53-69
DOI URL |
[32] |
Kinmonth-Schultz H A, Golembeski G S, Imaizumi T. Circadian clock-regulated physiological outputs: Dynamic responses in nature[J]. Seminars in Cell and Developmental Biology, 2013, 24(5):407-413
DOI PMID |
[33] | 陈祥彬. 小麦TaTOC1-A、TaTOC1-B和TaTOC1-D基因的克隆与表达分析[D]. 泰安: 山东农业大学, 2009: 42-49 |
[34] |
Murakami M, Ashikari M, Miura K, Yamashino T, Mizuno T. The evolutionarily conserved OsPRR quintet: Rice pseudo-pesponse pegulators implicated in circadian rhythm[J]. Plant Cell Physiology, 2003, 44(11):1229-1236
DOI URL |
[35] | 洪坡. 小麦TaTOC1s基因调控开花与发育的分子机理研究[D]. 泰安: 山东农业大学, 2018: 65-84 |
[1] | ZHONG Huaiqin, KONG Lan, FAN Ronghui, FANG Nengyan, LIN Rongyan, LIN Bing. Cloning and Expression Analysis of Terpene Synthase Gene OnTPS From Oncidium Twinkle Red Fantasy [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 313-321. |
[2] | CAO Liru, ZHANG Qianjin, GUO Zining, LU Xiaomin, ZHANG Xin, WEI Xin, HUANG-FU Baishu, WANG Zhenhua. Geneome-Wide Identification and Expression Analysis of Auxin Response Factor Gene Family in Maize [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2016-2026. |
[3] | HE Lu, JIA Suqing, ZHAO Fangyu, LIU Jing, ZHANG Bin, HOU Siyu, HAN Yuanhuai. Correlation Analysis Between SiPSY1 Gene and Millet Color Formation in Foxtail Millet [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2512-2520. |
[4] | MA Chao, SONG Peng, SHANG Shenshen, YANG Xiaxia, YANG Jinhua, HAN Qunwei, LI Jimin, FENG Yalan. Whole Genome Identification and Analysis of GRFs Gene Family in Brachypodium distachyon [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(6): 1152-1162. |
[5] | MENG Chunyang, WEI Xiaochun, ZHAO Yanyan, YUAN Yuxiang, WANG Zhiyong, YANG Shuangjuan, JIANG Jun, ZHANG Xiaowei. Genome-wide Identification and Expression Analysis of BES1 Gene Family in Capsicum annuum [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(8): 1467-1473. |
[6] | YU Zicheng, NI Fei, JIANG Cheng, HUANG Huahong, LIN Erpei, TONG Zaikang. Isolation, Expression and Single Nucleotide Polymorphism Analysis of BlCCoAOMT From Betula luminifera [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 870-879. |
[7] | WANG Xiaodan, CHEN Hao, ZHANG Zhenqian, GUAN Chunyun. Relationship Between Two Resistance Gene and Diseases in High Oleic Acid Rapeseed [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 894-901. |
[8] | YAN Li, CHEN Jianwei, WANG Cuiping, TONG Qian, WANG Chen, QIAO Gaixia, LI Jian. Analysis of WD40 Protein Family Based on Transcriptome Sequencing in Lycium ruthenicum Murr. [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(3): 482-489. |
[9] | WANG Mian, ZHANG Chaoxin, CHEN Na, CHEN Mingna, YU Shanlin, CHI Xiaoyuan. Cloning, Expression and Subcellular Localization Analysis of the Gene AhMKK4 in Peanut (Arachis hypogaea L.) [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(12): 2328-2337. |
[10] | WANG Siyu, FU Ying, ZHOU Mingbing. Genome-wide Identification and Expression Analysis of the NF-Y Family Genes in Phyllostachys edulis [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1513-1527. |
[11] | MA Jingjing, LIU Shinan, ZHU Longfei, QI Tiantian, LIN Xinchun. Cloning and Functional Analysis of VRN1 Gene From Phyllostachys violascens [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1699-1705. |
[12] | LIU Shinan, QI Tiantian, MA Jingjing, MA Lyuyi, LIN Xinchun. Cloning and Functional Analysis of SEP-like Gene From Phyllostachys violascens [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(8): 1453-1459. |
[13] | NI Zhiyong, QIU Yingfeng, ·, YU Yuehua, CHEN Quanjia, QU Yanying. Cloning and Subcellular Localization Analysis of GhMYB146 Gene in Cotton [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(11): 2119-2126. |
[14] | CHEN Lei, LI Qiuyuan, YE Shenghai, JIN Qingsheng, ZHANG Xiaoming. Identification and Analysis of a Rice Lignin Monomer Synthesis Deficient Mutant [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(3): 428-434. |
[15] | SU Shun-zong, WU Feng-kai, LIU Dan, WU Ling, GAO Shi-bin. Cloning and Characterization of a Phosphate Transporter Gene of Pht1 Family in Maize [J]. J4, 2013, 27(7): 885-894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||