Journal of Nuclear Agricultural Sciences ›› 2022, Vol. 36 ›› Issue (1): 154-162.DOI: 10.11869/j.issn.100-8551.2022.01.0154
• Food Irradiation·Food Science • Previous Articles Next Articles
MA Caixia1(), LIANG Qi1,*(
), WANG Xiangzhu2, LIU Ying2
Received:
2020-12-07
Accepted:
2021-02-08
Online:
2022-01-10
Published:
2021-12-06
Contact:
LIANG Qi
通讯作者:
梁琪
作者简介:
马彩霞,女,主要从事乳品微生物研究。E-mail: 280062500@qq.com
基金资助:
MA Caixia, LIANG Qi, WANG Xiangzhu, LIU Ying. The Bacterial Community Diversity of Traditional Fermented Yak Milk in Gannan of Gansu[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 154-162.
马彩霞, 梁琪, 王湘竹, 刘瑛. 甘肃甘南传统发酵牦牛乳中细菌菌群的多样性研究[J]. 核农学报, 2022, 36(1): 154-162.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2022.01.0154
样品 Sample | 序列数 Reads | 操作分类 单元数OTUs | 多样性指数Diversity index | 覆盖率 Coverage/% | |||
---|---|---|---|---|---|---|---|
Chao1指数 Chao1 index | ACE指数 ACE index | Simpson指数 Simpson index | Shannon指数 Shannon index | ||||
M1 | 57 486 | 12 | 12.00 | 13.460 | 0.046 | 0.130 | 99.8 |
M2 | 49 986 | 13 | 13.00 | 13.365 | 0.052 | 0.150 | 99.8 |
M3 | 57 005 | 12 | 12.00 | 12.639 | 0.010 | 0.050 | 99.8 |
M4 | 53 098 | 13 | 13.00 | 13.520 | 0.218 | 0.400 | 99.8 |
W1 | 52 888 | 14 | 14.00 | 14.252 | 0.010 | 0.042 | 99.8 |
W2 | 45 476 | 12 | 12.50 | 15.028 | 0.185 | 0.348 | 99.8 |
W3 | 44 917 | 13 | 14.50 | 15.936 | 0.007 | 0.030 | 99.8 |
W4 | 43 909 | 11 | 11.00 | 11.000 | 0.009 | 0.036 | 99.8 |
D1 | 64 505 | 13 | 13.00 | 13.460 | 0.020 | 0.070 | 99.8 |
D2 | 57 078 | 12 | 12.00 | 12.000 | 0.010 | 0.050 | 99.8 |
D3 | 76 182 | 13 | 13.00 | 13.551 | 0.040 | 0.120 | 99.8 |
D4 | 58 689 | 13 | 13.00 | 13.520 | 0.050 | 0.140 | 99.8 |
QL1 | 59 002 | 15 | 15.00 | 15.380 | 0.598 | 1.060 | 99.8 |
Table 1 Alpha diversity index of each sample
样品 Sample | 序列数 Reads | 操作分类 单元数OTUs | 多样性指数Diversity index | 覆盖率 Coverage/% | |||
---|---|---|---|---|---|---|---|
Chao1指数 Chao1 index | ACE指数 ACE index | Simpson指数 Simpson index | Shannon指数 Shannon index | ||||
M1 | 57 486 | 12 | 12.00 | 13.460 | 0.046 | 0.130 | 99.8 |
M2 | 49 986 | 13 | 13.00 | 13.365 | 0.052 | 0.150 | 99.8 |
M3 | 57 005 | 12 | 12.00 | 12.639 | 0.010 | 0.050 | 99.8 |
M4 | 53 098 | 13 | 13.00 | 13.520 | 0.218 | 0.400 | 99.8 |
W1 | 52 888 | 14 | 14.00 | 14.252 | 0.010 | 0.042 | 99.8 |
W2 | 45 476 | 12 | 12.50 | 15.028 | 0.185 | 0.348 | 99.8 |
W3 | 44 917 | 13 | 14.50 | 15.936 | 0.007 | 0.030 | 99.8 |
W4 | 43 909 | 11 | 11.00 | 11.000 | 0.009 | 0.036 | 99.8 |
D1 | 64 505 | 13 | 13.00 | 13.460 | 0.020 | 0.070 | 99.8 |
D2 | 57 078 | 12 | 12.00 | 12.000 | 0.010 | 0.050 | 99.8 |
D3 | 76 182 | 13 | 13.00 | 13.551 | 0.040 | 0.120 | 99.8 |
D4 | 58 689 | 13 | 13.00 | 13.520 | 0.050 | 0.140 | 99.8 |
QL1 | 59 002 | 15 | 15.00 | 15.380 | 0.598 | 1.060 | 99.8 |
分类 Classification | 门水平相对丰度 Relative abundance at the phylum level/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | W1 | W2 | W3 | W4 | D1 | D2 | D3 | D4 | QL1 | |
厚壁菌门Firmicutes | 99.98 | 99.96 | 99.98 | 99.98 | 99.99 | 99.99 | 99.97 | 99.97 | 99.98 | 99.95 | 99.99 | 99.96 | 99.99 |
变形菌门Proteobacteria | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 |
蓝菌门Cyanobacteria | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 |
拟杆菌门Bacteroidetes | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
未分类Unclassified | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 |
Table 2 The relative abundance of horizontal flora distribution at the phylum level of each sample
分类 Classification | 门水平相对丰度 Relative abundance at the phylum level/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | W1 | W2 | W3 | W4 | D1 | D2 | D3 | D4 | QL1 | |
厚壁菌门Firmicutes | 99.98 | 99.96 | 99.98 | 99.98 | 99.99 | 99.99 | 99.97 | 99.97 | 99.98 | 99.95 | 99.99 | 99.96 | 99.99 |
变形菌门Proteobacteria | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 |
蓝菌门Cyanobacteria | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 |
拟杆菌门Bacteroidetes | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
未分类Unclassified | 0.01 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 |
分类 Classification | 属水平相对丰度 Relative abundance at the genus level/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | W1 | W2 | W3 | W4 | D1 | D2 | D3 | D4 | QL1 | |
乳杆菌属Lactobacillus | 97.85 | 97.61 | 99.74 | 88.21 | 99.69 | 89.94 | 99.90 | 99.79 | 99.32 | 99.72 | 98.23 | 97.78 | 79.89 |
链球菌属Streptococcus | 2.10 | 2.32 | 0.23 | 11.73 | 0.29 | 10.05 | 0.08 | 0.19 | 0.66 | 0.21 | 1.75 | 2.16 | 20.09 |
鲁杰氏菌属Ruegeria | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
普雷沃菌属Prevotella | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
未分类Unclassified | 0.05 | 0.07 | 0.03 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 0.07 | 0.02 | 0.04 | 0.02 |
Table 3 The relative abundance of horizontal flora distribution at the genus level of each sample
分类 Classification | 属水平相对丰度 Relative abundance at the genus level/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | W1 | W2 | W3 | W4 | D1 | D2 | D3 | D4 | QL1 | |
乳杆菌属Lactobacillus | 97.85 | 97.61 | 99.74 | 88.21 | 99.69 | 89.94 | 99.90 | 99.79 | 99.32 | 99.72 | 98.23 | 97.78 | 79.89 |
链球菌属Streptococcus | 2.10 | 2.32 | 0.23 | 11.73 | 0.29 | 10.05 | 0.08 | 0.19 | 0.66 | 0.21 | 1.75 | 2.16 | 20.09 |
鲁杰氏菌属Ruegeria | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 |
普雷沃菌属Prevotella | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
未分类Unclassified | 0.05 | 0.07 | 0.03 | 0.03 | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 0.07 | 0.02 | 0.04 | 0.02 |
COG功能分类 COG ID | 相对丰度 Relative abundance/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | W1 | W2 | W3 | W4 | D1 | D2 | D3 | D4 | QL1 | |
能源生产与转换 Energy production and conversion | 3.76 | 3.76 | 3.77 | 3.69 | 3.77 | 3.70 | 3.77 | 3.77 | 3.77 | 3.77 | 3.76 | 3.76 | 3.55 |
细胞周期控制 Cell cycle control | 1.48 | 1.48 | 1.48 | 1.47 | 1.48 | 1.47 | 1.48 | 1.48 | 1.48 | 1.48 | 1.48 | 1.48 | 1.44 |
氨基酸代谢 Amino acid metabolism | 7.70 | 7.70 | 7.68 | 7.82 | 7.68 | 7.80 | 7.67 | 7.68 | 7.68 | 7.68 | 7.70 | 7.70 | 7.76 |
核苷酸代谢 Nucleotide metabolism | 4.50 | 4.50 | 4.51 | 4.46 | 4.51 | 4.46 | 4.51 | 4.51 | 4.51 | 4.51 | 4.50 | 4.50 | 4.52 |
碳水化合物代谢 Carbohydrate metabolism | 9.39 | 9.39 | 9.36 | 9.49 | 9.36 | 9.47 | 9.36 | 9.37 | 9.37 | 9.37 | 9.38 | 9.39 | 9.39 |
辅酶代谢 Coenzyme metabolism | 2.56 | 2.56 | 2.56 | 2.58 | 2.56 | 2.58 | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 | 2.47 |
脂质代谢 Lipid metabolism | 2.68 | 2.68 | 2.69 | 2.64 | 2.69 | 2.64 | 2.69 | 2.69 | 2.69 | 2.69 | 2.68 | 2.68 | 2.48 |
翻译 Translation | 9.35 | 9.35 | 9.36 | 9.29 | 9.36 | 9.30 | 9.36 | 9.36 | 9.36 | 9.36 | 9.35 | 9.34 | 9.09 |
转录 Transcription | 7.24 | 7.24 | 7.21 | 7.40 | 7.21 | 7.37 | 7.21 | 7.21 | 7.22 | 7.21 | 7.23 | 7.24 | 7.49 |
复制/重组/修复 Replication/recombination/repair | 9.55 | 9.54 | 9.61 | 9.21 | 9.62 | 9.27 | 9.62 | 9.62 | 9.62 | 9.62 | 9.59 | 9.55 | 9.58 |
细胞壁/膜/包膜生物发生 Cell wall/membrane/envelope biogenesis | 5.52 | 5.53 | 5.52 | 5.54 | 5.52 | 5.54 | 5.52 | 5.52 | 5.52 | 5.52 | 5.52 | 5.53 | 5.62 |
细胞能动性 Cell motility | 0.41 | 0.41 | 0.40 | 0.41 | 0.40 | 0.41 | 0.40 | 0.40 | 0.41 | 0.40 | 0.41 | 0.41 | 0.43 |
修饰作用、蛋白质转化 modification、protein turnover | 2.84 | 2.84 | 2.83 | 2.87 | 2.83 | 2.86 | 2.83 | 2.83 | 2.83 | 2.83 | 2.84 | 2.84 | 2.89 |
无机离子代谢 Inorganic ion metabolism | 4.38 | 4.38 | 4.38 | 4.39 | 4.38 | 4.39 | 4.38 | 4.38 | 4.38 | 4.38 | 4.38 | 4.38 | 4.35 |
次生代谢产物合成和转化 Secondary metabolites biosynthesis and catabolism | 0.48 | 0.48 | 0.47 | 0.53 | 0.47 | 0.52 | 0.47 | 0.47 | 0.48 | 0.47 | 0.48 | 0.48 | 0.60 |
基本功能预测 General function prediction | 11.78 | 11.78 | 11.78 | 11.75 | 11.78 | 11.76 | 11.78 | 11.78 | 11.78 | 11.78 | 11.78 | 11.78 | 11.57 |
未知功能预测 Function unknown | 8.83 | 8.83 | 8.83 | 8.86 | 8.82 | 8.86 | 8.82 | 8.82 | 8.82 | 8.82 | 8.83 | 8.83 | 9.33 |
信号传导机制 Signal transduction mechanism | 3.37 | 3.37 | 3.37 | 3.39 | 3.37 | 3.39 | 3.37 | 3.37 | 3.37 | 3.37 | 3.37 | 3.37 | 3.23 |
细胞内运输和分泌Intracellular vesicular transport and secretion | 1.42 | 1.42 | 1.42 | 1.45 | 1.42 | 1.44 | 1.42 | 1.42 | 1.42 | 1.42 | 1.42 | 1.42 | 1.49 |
防御机制 Defense mechanism | 2.76 | 2.76 | 2.76 | 2.77 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 |
Table 4 Statistical table of relative abundance of COG functional classification of each sample
COG功能分类 COG ID | 相对丰度 Relative abundance/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | W1 | W2 | W3 | W4 | D1 | D2 | D3 | D4 | QL1 | |
能源生产与转换 Energy production and conversion | 3.76 | 3.76 | 3.77 | 3.69 | 3.77 | 3.70 | 3.77 | 3.77 | 3.77 | 3.77 | 3.76 | 3.76 | 3.55 |
细胞周期控制 Cell cycle control | 1.48 | 1.48 | 1.48 | 1.47 | 1.48 | 1.47 | 1.48 | 1.48 | 1.48 | 1.48 | 1.48 | 1.48 | 1.44 |
氨基酸代谢 Amino acid metabolism | 7.70 | 7.70 | 7.68 | 7.82 | 7.68 | 7.80 | 7.67 | 7.68 | 7.68 | 7.68 | 7.70 | 7.70 | 7.76 |
核苷酸代谢 Nucleotide metabolism | 4.50 | 4.50 | 4.51 | 4.46 | 4.51 | 4.46 | 4.51 | 4.51 | 4.51 | 4.51 | 4.50 | 4.50 | 4.52 |
碳水化合物代谢 Carbohydrate metabolism | 9.39 | 9.39 | 9.36 | 9.49 | 9.36 | 9.47 | 9.36 | 9.37 | 9.37 | 9.37 | 9.38 | 9.39 | 9.39 |
辅酶代谢 Coenzyme metabolism | 2.56 | 2.56 | 2.56 | 2.58 | 2.56 | 2.58 | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 | 2.47 |
脂质代谢 Lipid metabolism | 2.68 | 2.68 | 2.69 | 2.64 | 2.69 | 2.64 | 2.69 | 2.69 | 2.69 | 2.69 | 2.68 | 2.68 | 2.48 |
翻译 Translation | 9.35 | 9.35 | 9.36 | 9.29 | 9.36 | 9.30 | 9.36 | 9.36 | 9.36 | 9.36 | 9.35 | 9.34 | 9.09 |
转录 Transcription | 7.24 | 7.24 | 7.21 | 7.40 | 7.21 | 7.37 | 7.21 | 7.21 | 7.22 | 7.21 | 7.23 | 7.24 | 7.49 |
复制/重组/修复 Replication/recombination/repair | 9.55 | 9.54 | 9.61 | 9.21 | 9.62 | 9.27 | 9.62 | 9.62 | 9.62 | 9.62 | 9.59 | 9.55 | 9.58 |
细胞壁/膜/包膜生物发生 Cell wall/membrane/envelope biogenesis | 5.52 | 5.53 | 5.52 | 5.54 | 5.52 | 5.54 | 5.52 | 5.52 | 5.52 | 5.52 | 5.52 | 5.53 | 5.62 |
细胞能动性 Cell motility | 0.41 | 0.41 | 0.40 | 0.41 | 0.40 | 0.41 | 0.40 | 0.40 | 0.41 | 0.40 | 0.41 | 0.41 | 0.43 |
修饰作用、蛋白质转化 modification、protein turnover | 2.84 | 2.84 | 2.83 | 2.87 | 2.83 | 2.86 | 2.83 | 2.83 | 2.83 | 2.83 | 2.84 | 2.84 | 2.89 |
无机离子代谢 Inorganic ion metabolism | 4.38 | 4.38 | 4.38 | 4.39 | 4.38 | 4.39 | 4.38 | 4.38 | 4.38 | 4.38 | 4.38 | 4.38 | 4.35 |
次生代谢产物合成和转化 Secondary metabolites biosynthesis and catabolism | 0.48 | 0.48 | 0.47 | 0.53 | 0.47 | 0.52 | 0.47 | 0.47 | 0.48 | 0.47 | 0.48 | 0.48 | 0.60 |
基本功能预测 General function prediction | 11.78 | 11.78 | 11.78 | 11.75 | 11.78 | 11.76 | 11.78 | 11.78 | 11.78 | 11.78 | 11.78 | 11.78 | 11.57 |
未知功能预测 Function unknown | 8.83 | 8.83 | 8.83 | 8.86 | 8.82 | 8.86 | 8.82 | 8.82 | 8.82 | 8.82 | 8.83 | 8.83 | 9.33 |
信号传导机制 Signal transduction mechanism | 3.37 | 3.37 | 3.37 | 3.39 | 3.37 | 3.39 | 3.37 | 3.37 | 3.37 | 3.37 | 3.37 | 3.37 | 3.23 |
细胞内运输和分泌Intracellular vesicular transport and secretion | 1.42 | 1.42 | 1.42 | 1.45 | 1.42 | 1.44 | 1.42 | 1.42 | 1.42 | 1.42 | 1.42 | 1.42 | 1.49 |
防御机制 Defense mechanism | 2.76 | 2.76 | 2.76 | 2.77 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 | 2.76 |
[1] | Bao R, Yan J P, Li W, Zhao Y. Low-carbon tourism in minority areas - a case of Gannan tibetan autonomous prefecture in Gansu[J]. Natural Resources and Sustainable Development, 2012, 361-363: 1718-1723 |
[2] |
Xu L, Li Y, Wang L L. Study on the comprehensive tourism development pattern in periphery minority area: A case study of Gannan tibetan autonomous prefecture of Gansu province, China[J]. Chinese Journal of Population Resources and Environment, 2007, 5(3): 43-50
DOI URL |
[3] |
Luo D L, Liu L, Jin H J, Wang X F, Chen F F. Characteristics of ground surface temperature at Chalaping in the source area of the Yellow River, northeastern tibetan plateau[J]. Agricultural and Forest Meteorology, 2020, 281: 107819
DOI URL |
[4] | G J K. Research on time selection of mass sports in tibetan areas plateau of Gansu province based on environmental science[J]. IOP Conference Series-Earth and Environmental Science, 2018, 108(4): 2033 |
[5] | 秦红林, 贾玉琴. 甘肃省藏区牦牛资源现状及对策[J]. 中国牛业科学, 2017, 43(2): 58-60 |
[6] |
Xin J W, Chai Z X, Zhang C F, Zhang Q, Zhu Y, Cao H W, Zhong J C, Ji Q. Comparing the microbial community in four stomach of dairy cattle, yellow cattle and three yak herds in Qinghai-Tibetan plateau[J]. Frontiers in Microbiology, 2019, 10: 1547
DOI URL |
[7] |
Shi B G, Jiang Y Y, Chen Y L, Zhao Z D, Hui T, Luo Y Z, Hu J. Variation in the fatty acid synthase gene (FASN) and its association with milk traits in Gannan yaks[J]. Animals, 2019, 9(9): 613
DOI URL |
[8] |
Yi R k, Tan F, Liao W, Wang Q, Mu J F, Zhou X R, Yang Z N, Zhao X. Isolation and identification of Lactobacillus plantarum HFY05 from natural fermented yak yogurt and its effect on alcoholic liver injury in mice[J]. Microorganisms, 2019, 7(11): 530
DOI URL |
[9] | Qian Y, Long X Y, PanY N, Li G J, Zhao X. Isolation and identification of lactic acid bacteria (Lactobacillus plantarum YS2) from yak yogurt and its probiotic properties[J]. Biomedical Research, 2018, 29(4): 815-820 |
[10] | 张祺玲, 彭玲, 陈雪梅, 徐远芳, 周毅吉, 冯彦勇, 李文革. 食用槟榔加工过程中真菌群落组成及变化研究[J]. 核农学报, 2020, 34(11): 2541-2550 |
[11] |
Shangpliang H N J, Rai R, Keisam S, Jeyaram K, Tamang J P. Bacterial community in naturally fermented milk products of Arunachal Pradesh and Sikkim of India analysed by high-throughput amplicon sequencing[J]. Scientific Reports, 2018, 8(1): 1532
DOI PMID |
[12] | Liu W, Zheng Y, Kwok L Y, Sun Z, Zhang J, Guo Z, Hou Q, Menhe B, Zhang H. High-throughput sequencing for the detection of the bacterial and fungal diversity in Mongolian naturally fermented cow’s milk in Russia[J]. BMC Microbiology, 2015, 15(1): 385 |
[13] |
Sessou P, Keisam S, Tuikhar N, Gagara M, Farougou S, Jeyaram K. High-throughput Illumina miSeq amplicon sequencing of yeast communities associated with indigenous dairy products from republics of Benin and Niger[J]. Frontiers in Microbiology, 2019, 10: 594
DOI URL |
[14] |
Ma L, Xu S, Liu H, Xu T, Hu L, Zhao N, Han X, Zhang X. Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet plateau[J]. PeerJ, 2019, 7(9): e7645
DOI URL |
[15] |
Dalmasso A, Soto del Rio M D, Civera T, Pattono D, Cardazzo B, Bottero M T. Characterization of microbiota in Plaisentif cheese by high-throughput sequencing[J]. LWT-Food Science and Technology, 2016, 69: 490-496
DOI URL |
[16] | 陆洋. 添加芽孢杆菌对草鱼池塘中微生物群落结构和理化因子的影响研究[D]. 上海: 上海海洋大学, 2019: 6-7 |
[17] |
Fu Y J, Li X, Zheng S H, Du J, Liang A H. Classification and identification of bacteria in the soil treated by AcMNPV using high-throughput sequencing technique[J]. Biotechnology and Bioprocess Engineering, 2015, 20(5): 931-936
DOI URL |
[18] | Ji Y J, Kong X F, Li H W, Zhu Q, Guo Q P, Yin Y L. Effects of dietary nutrient levels on microbial community composition and diversity in the ileal contents of pregnant Huanjiang mini-pigs[J]. PLoS One, 2017, 12(2): 1-17 |
[19] | 黄皓. 东北林蛙和黑龙江林蛙肠道菌群比较及免疫功能初步分析[D]. 哈尔滨: 东北林业大学, 2019: 8-9 |
[20] |
Zhang F X, Wang Z X, Lei F Y, Wang B N, Jiang S M, Peng Q N, Zhang J C, Shao Y Y. Bacterial diversity in goat milk from the Guan Zhong area of China[J]. Journal of Dairy Science, 2017, 100(10): 7812-7824
DOI URL |
[21] |
Sarr P S, Sugiyama A, Begoude A D B, Yazaki K, Araki S, Nawata E. Diversity and distribution of arbuscular mycorrhizal fungi in cassava (Manihot esculenta Crantz) croplands in Cameroon as revealed by Illumina MiSeq[J]. Rhizosphere, 2019, 10(5): 100147
DOI URL |
[22] | 彭买姣, 惠华英, 肖嫩群, 谭周进. 芦笋对高脂饮食小鼠肠道内容物细菌多样性的影响[J]. 核农学报, 2019, 33(11): 2229-2236 |
[23] |
Gregory J C, Lauber C L, Walters W A, Berg-Lyons D, Lozupone C A, Turnbaugh P J, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences, 2011, 108(1): 4516-4522
DOI URL |
[24] |
Wang Y R, She M, Liu K L, Zhang Z D, Shuang Q. Evaluation of the bacterial diversity of inner Mongolian acidic gruel using Illumina miseq and PCR-DGGE[J]. Current Microbiology, 2020, 77(3): 434-442
DOI URL |
[25] | 曹磊, 梁春御, 曹瑛瑛, 文开勇, 文鹏程, 杨敏, 冯晓蘶, 张忠明, 张卫兵. 甘南地区牦牛曲拉中细菌群落结构[J]. 食品科学, 2019, 40(22): 103-109 |
[26] | Zhang W B, Luo Q Q, Zhu Y, Ma J, Cao L, Yang M, Wen P C, Zhang Z M. Microbial diversity in two traditional bacterial douchi from Gansu province in northwest China using Illumina sequencing[J]. PLoS One, 2018, 13(3): 1-16 |
[27] |
Langille M G, Zaneveld J, Caporaso J G, McDonald D, Knights D, Reyes J A, Clemente J C, Burkepile D E, Vega T R L, Knight R, Beiko RG, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821
DOI PMID |
[28] |
NamY D, Park S L, Lim S Ⅰ. Microbial composition of the korean traditional food “kochujang” analyzed by a massive sequencing technique[J]. Journal of Food Science, 2012, 77(4): M250-M256
DOI URL |
[29] |
Bokulich N A, Amiranashvili L, Chitchyan K, Ghazanchyan N, Darbinyan K, Gagelidze N, Sadunishvili T, Goginyan Ⅴ, Kvesitadze G, Torok T, Mills D A. Microbial biogeography of the transnational fermented milk matsoni[J]. Food Microbiology, 2015, 50: 12-19
DOI URL |
[30] | Zhang M, Zhang Y, Huang L L, Liu Y D, Zhou H, Ni Y Q. Application of 16S rDNA high-throughput sequencing for comparative study of the microbial diversity of dairy products from western and northern Xinjiang, China[J]. Food Science, 2017, 38(20): 27-33 |
[31] |
Xu H Y, Liu W J, Gesudu Q, Sun Z H, Zhang J C, Guo Z, Zheng Yi, Hou Q C, Yu J, Qing Y T, Kwok L Y, Menhe B, Zhang H P. Assessment of the bacterial and fungal diversity in home-made yoghurts of Xinjiang, China by pyrosequencing[J]. Journal of the Science of Food and Agriculture, 2015, 95(10): 2007-2015
DOI URL |
[32] |
Liu X F, Liu C J, Zhang H Y, Gong F M, Luo Y Y, Li X R. The bacterial community structure of yond bap, a traditional fermented goat milk product, from distinct Chinese regions[J]. Dairy Science and Technology, 2015, 95(3): 369-380
DOI URL |
[33] |
Bao Q H, Yu J, Liu W J, Qing M J, Wang W H, Chen X, Wang F, Li M H, Wang H M, Zhang H P. Predominant lactic acid bacteria in traditional fermented yak milk products in the Sichuan Province of China[J]. Dairy Science and Technology, 2012, 92(3): 309-319
DOI URL |
[34] |
Watanabe K, Fujimoto J J, Sasamoto M, Dugersuren J, Tumursuh T, Demberel S. Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia[J]. World Journal of Microbiology and Biotechnology, 2009, 24(8): 1313-1325
DOI URL |
[35] |
Rogosa M, Mitchell J A, Wiseman R F. Selective medium for the isolation and enumeration of oral and fecal lactobacilli[J]. Journal of Bacteriology, 1951, 62(1): 132-133
DOI URL |
[36] |
Uchino Y, Hirata A, Yokota A, Sugiyama J. Reclassification of marine agrobacterium species: Proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev.[J]. The Journal of General and Applied Microbiology, 1998, 44(3): 201-210
DOI URL |
[37] |
Duan Y F, Wang Y, Liu Q S, Dong H B, Li H, Xiong D L, Zhang J S. Changes in the intestine microbial, digestion and immunity of Litopenaeus vannamei in response to dietary resistant starch[J]. Scientific Reports, 2019, 9(1): 6464
DOI URL |
[38] |
Quigley L, O'Sullivan O, Beresford T P, Ross R P, Fitzgerald G F, Cotter P D. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses[J]. Applied Environmental Microbiology, 2012, 78(16): 5717-5723
DOI URL |
[39] |
Inoue R, Ohue-Kitano R, Tsukahara T, Tanaka M, Masuda S, Inoue T, Yamakage H, Kusakabe T, Hasegawa K, Shimatsu A, Satoh-Asahara N. Prediction of functional profiles of gut microbiota from 16S rRNA metagenomic data provides a more robust evaluation of gut dysbiosis occurring in Japanese type 2 diabetic patients[J]. Journal of Clinical Biochemistry and Nutrition, 2017, 61(3): 217-221
DOI PMID |
[40] |
Zeng S Z, Huang Z J, Hou D W, Liu J, Weng S P, He J G. Composition, diversity and function of intestinal microbiota in pacific white shrimp (Litopenaeus vannamei) at different culture stages[J]. PeerJ, 2017, 5(11): e3986
DOI URL |
[1] | YANG Li, GOU Ying, WEN Ziwei, LIU Yuhang, PAN Genxing, YANG Limin. Effect of Biochar on Soil Fertility and Microbial Properties in Continuous Cropping Ginseng Field [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(6): 1244-1253. |
[2] | WANG Zhongtang, SHA Jianchuan, XIE Xiaofeng, MENG Xiaoye, ZHAO Dengchao, PENG Ling, ZHANG Qiong. Effects of Different Grasses Cultivation on Soil Nutrient and Bacterial Community in Chinese Jujube Orchard [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 456-465. |
[3] | XIAO Liting, YANG Huilin, HUANG Wenxin, FU Xueqin. Effects of Grass Cultivation on Soil Microbial Community Structure and Functional Characteristics in Nanfeng Tangerine Orchard [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 190-200. |
[4] | TANG Jie, CHEN Zhiqing, GUO Annan, QIU Qiongfen. Characteristics of Microbial Community Structure in the Rhizosphere Soil of Different Crops [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2830-2840. |
[5] | ZHANG Qiling, PENG Ling, CHEN Xuemei, XU Yuanfang, ZHOU Yiji, FENG Yanyong, LI Wenge. The Composition and Changes of Fungi Community During Processing of Edible Betelnut [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(11): 2541-2550. |
[6] | NIE Zhaolong, LIU Shujie, CUI Zhanhong, PAN Hao, CHAI Shatuo, SUN Lu, ZHANG Xiaowei, FENG Yuzhe. Analysis of Rumen Bacterial Flora Diversity in Young and Adult Bazhou Yaks in Xinjiang [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(11): 2147-2157. |
[7] | HU Junjie, SHI Changqing, ZHANG Yong, WANG Juanhong, CHANG Weihua. The Study of Candidate miRNA of Sexual Maturity Period Ovarian Tissue of Gansu Alpine Fine Wool Sheep [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(1): 50-57. |
[8] | LIU Shuang, QIAO Yu, WANG Fang, HAN Xu, JIN Xiaoxia, CHI Chunyu, YU Lijie, DING Guohua. Screening of Genes Induced by Salicylic Acid in Cucumber Based on Digital Gene Expression Profiling [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(5): 874-884. |
[9] | ZHAO Zhen-qing, GU Hong-hui, SHENG Xiao-guang, YU Hui-fang, WANG Jian-sheng, CAO Jia-shu. Advances and Applications in Crop Quantitative Trait Locus [J]. Journal of Nuclear Agricultural Sciences, 2014, 28(9): 1615-1624. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||