Journal of Nuclear Agricultural Sciences ›› 2022, Vol. 36 ›› Issue (1): 75-82.DOI: 10.11869/j.issn.100-8551.2022.01.0075
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
ZHANG Hong(), LU Guodong, YUAN Chunchun, LANG Sirui, CHEN Ren*(
)
Received:
2020-10-29
Accepted:
2021-01-07
Online:
2022-01-10
Published:
2021-12-06
Contact:
CHEN Ren
通讯作者:
陈任
作者简介:
张虹,女,副教授,主要从事植物基因工程研究。E-mail: zhhong1225@aliyun.com
基金资助:
ZHANG Hong, LU Guodong, YUAN Chunchun, LANG Sirui, CHEN Ren. Correlation Between the Accumulations of 9 Steviol Glycosides and the Expressions of the Key Genes Involved in Their Biosynthesis in Stevia rebaudiana[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 75-82.
张虹, 路国栋, 袁春春, 郎思睿, 陈任. 甜叶菊中9种甜菊醇糖苷积累与其生物合成关键基因表达量的相关性[J]. 核农学报, 2022, 36(1): 75-82.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2022.01.0075
基因名称 Gene name | 引物序列(5'-3') Primer sequence (5'-3') | 扩增长度 Amplication length/bp |
---|---|---|
SrGAPDH | CGGTGTCAATGAGCACGAAT | 58 |
TGCAGCTAGCGTTTGAAACAA | ||
SrUGT76G1 | TGGTCCGCTCGCTGGTAT | 55 |
TCGTCAGCTCCGTGTTCGT | ||
SrUGT74G1 | GAGCAAATACAGAGCCCTTGGT | 69 |
CCAACGTGCTTGATCAATATTAGC | ||
SrUGT91D2e | ACGGACGTCCACACTCATGA | 59 |
GGCTGAAGTCCGTCAAAAGC |
Table 1 Primer sequences for fluorescent qRT-PCR
基因名称 Gene name | 引物序列(5'-3') Primer sequence (5'-3') | 扩增长度 Amplication length/bp |
---|---|---|
SrGAPDH | CGGTGTCAATGAGCACGAAT | 58 |
TGCAGCTAGCGTTTGAAACAA | ||
SrUGT76G1 | TGGTCCGCTCGCTGGTAT | 55 |
TCGTCAGCTCCGTGTTCGT | ||
SrUGT74G1 | GAGCAAATACAGAGCCCTTGGT | 69 |
CCAACGTGCTTGATCAATATTAGC | ||
SrUGT91D2e | ACGGACGTCCACACTCATGA | 59 |
GGCTGAAGTCCGTCAAAAGC |
品种 Cultivar | 时期 Stage | 甜菊醇糖苷含量SGs content/(mg·g-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RA | RB | RC | RD | RE | RF | ST | RBS | DA | ||
Pu3 | S1 | 1.44±0.10b | 0.16±0.01a | 0.22±0.05b | 1.13±0.03c | 0.03±0.01a | 0.02±0.00a | 0.54±0.03a | 0.04±0.02a | 0.01±0.00a |
S2 | 1.60±0.04a | 0.25±0.00a | 0.41±0.02a | 1.41±0.04b | 0.05±0.00a | 0.04±0.00a | 0.43±0.02a | 0.02±0.00a | 0.01±0.00a | |
S3 | 1.27±0.12c | 0.22±0.02a | 0.27±0.05b | 1.58±0.04a | 0.11±0.01a | 0.02±0.01a | 0.50±0.02a | 0.01±0.00a | 0.01±0.00a | |
ZS2 | S1 | 1.17±0.04a | 0.12±0.05b | 0.49±0.07b | 0.54±0.05c | 0.11±0.01b | 0.28±0.01c | 0.93±0.03a | 0.09±0.04a | 0.40±0.03a |
S2 | 1.26±0.14a | 0.24±0.08a | 0.68±0.00a | 0.79±0.00b | 0.14±0.09b | 0.49±0.00b | 0.77±0.05b | 0.04±0.01b | 0.26±0.00b | |
S3 | 1.23±0.10a | 0.23±0.05a | 0.70±0.05a | 0.85±0.05a | 0.29±0.01a | 0.79±0.07a | 0.91±0.07a | 0.15±0.03a | 0.41±0.02a | |
TX | S1 | 1.20±0.06a | 0.08±0.02b | 0.51±0.04b | 0.38±0.05b | 0.14±0.01b | 0.43±0.03c | 0.98±0.03a | 0.16±0.05a | 0.49±0.09b |
S2 | 1.14±0.02a | 0.17±0.03a | 0.71±0.02a | 0.70±0.11a | 0.50±0.01a | 1.25±0.06a | 1.05±0.02a | 0.01±0.01b | 0.61±0.02a | |
S3 | 1.08±0.03a | 0.19±0.03a | 0.59±0.00b | 0.68±0.08a | 0.46±0.04a | 0.96±0.06b | 1.02±0.01a | 0.21±0.00a | 0.63±0.02a |
Table 2 The contents of 9 steviol glycosides in different growth cultivars and different stages
品种 Cultivar | 时期 Stage | 甜菊醇糖苷含量SGs content/(mg·g-1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RA | RB | RC | RD | RE | RF | ST | RBS | DA | ||
Pu3 | S1 | 1.44±0.10b | 0.16±0.01a | 0.22±0.05b | 1.13±0.03c | 0.03±0.01a | 0.02±0.00a | 0.54±0.03a | 0.04±0.02a | 0.01±0.00a |
S2 | 1.60±0.04a | 0.25±0.00a | 0.41±0.02a | 1.41±0.04b | 0.05±0.00a | 0.04±0.00a | 0.43±0.02a | 0.02±0.00a | 0.01±0.00a | |
S3 | 1.27±0.12c | 0.22±0.02a | 0.27±0.05b | 1.58±0.04a | 0.11±0.01a | 0.02±0.01a | 0.50±0.02a | 0.01±0.00a | 0.01±0.00a | |
ZS2 | S1 | 1.17±0.04a | 0.12±0.05b | 0.49±0.07b | 0.54±0.05c | 0.11±0.01b | 0.28±0.01c | 0.93±0.03a | 0.09±0.04a | 0.40±0.03a |
S2 | 1.26±0.14a | 0.24±0.08a | 0.68±0.00a | 0.79±0.00b | 0.14±0.09b | 0.49±0.00b | 0.77±0.05b | 0.04±0.01b | 0.26±0.00b | |
S3 | 1.23±0.10a | 0.23±0.05a | 0.70±0.05a | 0.85±0.05a | 0.29±0.01a | 0.79±0.07a | 0.91±0.07a | 0.15±0.03a | 0.41±0.02a | |
TX | S1 | 1.20±0.06a | 0.08±0.02b | 0.51±0.04b | 0.38±0.05b | 0.14±0.01b | 0.43±0.03c | 0.98±0.03a | 0.16±0.05a | 0.49±0.09b |
S2 | 1.14±0.02a | 0.17±0.03a | 0.71±0.02a | 0.70±0.11a | 0.50±0.01a | 1.25±0.06a | 1.05±0.02a | 0.01±0.01b | 0.61±0.02a | |
S3 | 1.08±0.03a | 0.19±0.03a | 0.59±0.00b | 0.68±0.08a | 0.46±0.04a | 0.96±0.06b | 1.02±0.01a | 0.21±0.00a | 0.63±0.02a |
Fig.1 The content differences of 9 SGs in different cultivars at same growth stages Note: A: Young seedling stage. B: Vegetative stage. C: Flower budding stage. Different lowercase letters indicates significance difference at 0.05 level among different cultivars in same growth stages. The same as following.
基因名称 Gene name | 相关系数/Correlation coefficient | ||||||||
---|---|---|---|---|---|---|---|---|---|
RA | RB | RC | RD | RE | RF | ST | RBS | DA | |
SrUGT76G1 | 0.797* | 0.528 | -0.223 | 0.621 | -0.279 | -0.289 | -0.667* | -0.602 | -0.574 |
SrUGT91D2e | 0.225 | 0.570 | -0.485 | 0.812** | -0.144 | -0.366 | -0.571 | -0.692* | -0.508 |
SrUGT74G1 | -0.767* | -0.248 | 0.800** | -0.763* | 0.714* | 0.808** | 0.906** | 0.529 | 0.885** |
Table 3 The correlation between the expression levels of the key genes in SGs biosynthesis and the contents of 9 SGs
基因名称 Gene name | 相关系数/Correlation coefficient | ||||||||
---|---|---|---|---|---|---|---|---|---|
RA | RB | RC | RD | RE | RF | ST | RBS | DA | |
SrUGT76G1 | 0.797* | 0.528 | -0.223 | 0.621 | -0.279 | -0.289 | -0.667* | -0.602 | -0.574 |
SrUGT91D2e | 0.225 | 0.570 | -0.485 | 0.812** | -0.144 | -0.366 | -0.571 | -0.692* | -0.508 |
SrUGT74G1 | -0.767* | -0.248 | 0.800** | -0.763* | 0.714* | 0.808** | 0.906** | 0.529 | 0.885** |
Fig.3 Relationship of between the expression levels of the key genes in SGs biosynthesis and the contents of 9 SGs Note: The relationship between the expression levels of the key genes in SGs biosynthesis and the contents of 9 SGs are expressed in straight lines, positive and negative correlation are shown in red and green, and the darker color means the higher coefficient.
[1] |
Ruiz-Ruiz J C, Moguel-Ordoñez Y B, Segura-Campos M R. Biological activity of Stevia rebaudiana Bertoni and their relationship to health[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(12): 2680-2690
DOI PMID |
[2] |
Carrera-Lanestosa A, Moguel-Ordonez Y, Segura-Campos M. Stevia rebaudiana Bertoni: A natural alternative for treating diseases associated with metabolic syndrome[J]. Journal of Medicinal Food, 2017, 20(10): 933-943
DOI PMID |
[3] |
Momtazi-Borojeni A A, Esmaeili S A, Abdollahi E, Sahebkar A. A review on the pharmacology and toxicology of Steviol Glycosides extracted from Stevia rebaudiana[J]. Current Pharmaceutical Design, 2017, 23(11): 1616-1622
DOI PMID |
[4] |
Purkayastha S, Markosyan A, Prakash Ⅰ, Bhusari S, Pugh G J, Lynch B, Roberts A. Steviol Glycosides in purified stevia leaf extract sharing the same metabolic fate[J]. Regulatory Toxicology and Pharmacology, 2016, 77(6): 125-133
DOI URL |
[5] |
Bundgaard Anker C C, Rafiq S, Jeppesen P B. Effect of Steviol Glycosides on human health with emphasis on type 2 diabetic biomarkers: A systematic review and meta-analysis of randomized controlled trials[J]. Nutrients, 2019, 11(9): 1965
DOI URL |
[6] | Arseneva T P, Evstigneeva T N, Iakovchenko N Ⅴ, Vitalevna L M, Kurganova E V. The effects of the addition of starter cultures and stevioside on technological low-fat fermented sherbet ice-cream without sugar[J]. Acta Scientiarum Polonorum Technologia Alimentaria, 2019, 18(4): 361-371 |
[7] |
Arumugam B, Subramaniam A, Alaguraj P. Stevia as a natural sweetener: A review[J]. Cardiovascular and Hematological Agents in Medicinal Chemistry, 2020, 18(2): 94-103
DOI URL |
[8] |
Salehi B, López M D, Martínez-López S, Victoriano M, Sharifi-Rad J, Martorell M, F Rodrigues C, Martins N. Stevia rebaudiana Bertoni bioactive effects: From in vivo to clinical trials towards future therapeutic approaches.[J]. Phytotherapy Research, 2019, 33(11): 2904-2917
DOI URL |
[9] |
Jung S W, Kim T K, Lee K W, Lee Y H. Catalytic properties of β-cyclodextrin glucanotransferase from alkalophilic Bacillus sp. BL-12 and intermolecular transglycosylation of stevioside[J]. Biotechnology and Bioprocess Engineering, 2007, 12(3): 207-212
DOI URL |
[10] |
Wölwer-Rieck U. The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: A review[J]. Journal of Agricultural and Food Chemistry, 2012, 60(4): 886-895
DOI PMID |
[11] | 王德骥. 再论甜菊糖苷的甜度、甜味和苦涩后味的成因机理[J]. 食品工业科技, 2010, 31(5): 417-420 |
[12] | Gerwig G J, Te Poele E M, Dijkhuizen L, Kamerling J P. Stevia Glycosides: Chemical and enzymatic modifications of their carbohydrate moieties to improve the sweet-tasting quality[J]. Advances in Carbohydrate Chemistry and Biochemistry, 2016, 73: 1-72 |
[13] | 倪万潮, 郭书巧. 甜菊醇糖苷生物合成及关键酶研究进展[J]. 生物技术通报, 2008(2): 48-53 |
[14] |
Richman A, Swanson A, Humphrey T, Chapman R, McGarvey B, Pocs R, Brandle J. Functional genomics uncovers three glucosyltransferases involved in the synjournal of the major sweet glucosides of Stevia rebaudiana[J]. Plant Journal for Cell and Molecular Biology, 2005, 41: 56-67
DOI URL |
[15] |
Yang Y H, Huang S Z, Han Y L, Yuan H Y, Gu C S, Zhao Y H. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: Mutations in UGT76G1, a key gene of steviol glycosides synjournal[J]. Plant Physiology and Biochemistry, 2014, 80: 220-225
DOI URL |
[16] |
Wang J F, Li S Y, Xiong Z Q, Wang Y. Pathway mining-based integration of critical enzyme parts for de novo biosynjournal of steviol glycosides sweetener in Escherichia coli[J]. Cell Research, 2016, 26(11): 258-261
DOI URL |
[17] | Ganesh M K, Michael M, Paula M H, Jorgen H, Jens H L, Esben H H, Michael D M, Sabina T, Charlotte B. Recombinant Production of Steviol Glycosides. USA, WO2011153378A1.[P]. 2011-12-8 |
[18] |
Kim M J, Zheng J S, Liao M H, Jang I C. Overexpression of SrUGT76G1 in Stevia alters major steviol glycosides composition towards improved quality[J]. Plant Biotechnology Journal, 2019, 17: 1037-1047
DOI URL |
[19] |
Ceunen S, Geuns J M. Steviol glycosides: Chemical diversity, metabolism, and function[J]. Journal of Natural Products, 2013, 76(6): 1201-1228
DOI PMID |
[20] |
Humphrey T V, Richman A S, Menassa R, Brandle J E. Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synjournal[J]. Plant Molecular Biology, 2006, 61(1/2): 47-62
DOI URL |
[21] |
Kumar H, Kaul K, Bajpai-Gupta S, Kaul V K, Kumar S. A comprehensive analysis of fifteen genes of steviol glycosides biosynjournal pathway in Stevia rebaudiana (Bertoni)[J]. Gene, 2012, 492(1): 276-284
DOI URL |
[22] | 赵永平, 何庆祥, 朱亚, 张肖凌, 钱永康, 王致和, 张秀华. 不同基因型甜叶菊产量和甜叶菊糖苷含量研究[J]. 中国农学通报, 2010, 26(19): 73-75 |
[23] | 郭志龙, 陈任, 马茜, 孙放, 张虹, 张自萍. 甜叶菊中莱苞迪苷D、莱苞迪苷A 含量测定方法的优化及应用[J]. 核农学报, 2020, 34(11): 2533-2540 |
[24] | 朱静雯, 郭书巧, 束红梅, 巩元勇, 蒋璐, 倪万潮. 甜菊糖苷积累与其生物合成基因表达的关系[J]. 植物遗传资源学报, 2017, 18(4): 747-753 |
[25] |
Ceunen S, Geuns J M. Influence of photoperiodism on the spatio-temporal accumulation of steviol glycosides in Stevia rebaudiana (Bertoni)[J]. Plant Science, 2013, 198: 72-82
DOI PMID |
[26] |
Ceunen S, Geuns J M. Spatio-temporal variation of the diterpenesteviol in Stevia rebaudiana grown under different photoperiods[J]. Phytochemistry, 2013, 89: 32-38
DOI PMID |
[27] |
Mandal S, Upadhyay S, Singh V P, Kapoor R. Enhanced production of steviol glycosides in mycorrhizal plants: A concerted effect of arbuscular mycorrhizal symbiosis on transcription of biosynthetic genes[J]. Plant Physiology and Biochemistry, 2015, 89: 100-106
DOI URL |
[28] |
Yang Y H, Huang S Z, Han Y L, Yuan H Y, Gu C S, Wang Z W. Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana[J]. Plant Physiology and Biochemistry, 2015, 86: 174-180
DOI URL |
[1] | ZHENG Hao, YANG Qianyu, LI Zhiqiang, SU Shuchai. Changes and Correlation Analysis of Appearance and Intrinsic Quality of Olea europaea With Different Maturity [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(6): 1089-1099. |
[2] | WANG Yu, ZHANG Kai, WANG Yanli, SI Zengzhi, WANG Bingbing, QIAO Yake. Identification of Glyphosate-Resistance and Preliminary Research on the Resistant Mechanism of Wild Soybean in Eastern Hebei Province [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(6): 1108-1114. |
[3] | REN Yun, LIU Han, ZHU Jianfang, LIN Baogang, LI Lupeng, HUA Shuijin. Effects of Nitrogen Rates and Plant Heights During Harvesting on Carbohydrate Accumulation in Young Stem of Oil-Vegetable Double Usage Type Rapeseed [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(6): 1236-1243. |
[4] | TANG Yuqing, WAN Shuilin, YAN Chengpu, WANG Yuting, HU Zhongdong. Carotenoids Accumulation and Relative Genes Expression During the Maturation of Zhuhong Mandarin [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(3): 567-577. |
[5] | WANG Peijuan, FAN Wenxia, LI Yanfang, LI Tiantian, WU Quanzhong, ZHAI Yunlong, WAN Sumei, CHEN Guodong. Effects of Planting Patterns of Jujube-Cotton Intercropping System on Photosynthetic Characteristics and Yield of Cotton [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(10): 2035-2045. |
[6] | XU Weiqing, WANG Xiaolei, LIU Yang, OU-YANG Linjuan, LI Weixing, OU-YANG Qinglan, HE Haohua, ZHU Changlan. QTL Mapping of Rice Cooking Characteristics and Correlation Analysis of Sensory Food Quality [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(1): 66-74. |
[7] | LAI Pufu, TANG Baosha, LI Yibin, WU Li, WENG Minjie, CHEN Junchen. Grey Correlation Analysis for Physical and Nutritional Quality of Hypsizygus marmoreus From Different Drying Methods [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2118-2126. |
[8] | YANG Min, LI Xiangling, HAN Jinling, YANG Qing, WANG Jian. Nicosulfuron Stress on Active Oxygen Accumulation, Antioxidant System and Related Gene Expression in Sweet Maize Seedlings [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2182-2193. |
[9] | ZHAO Dongxiao, SHI Xinqin, DONG Yaru, GENG Bing, SUN Jingshi, LOU Qinian, WANG Zhaohong, GUO Guang. Effects of 60Co-γ Radiation and PEG Stress on Physiological Characteristics and Related Gene Expression of Mulberry Seedlings [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1485-1494. |
[10] | SHI Yangqi, HUANG Xirui, RU Weidong, ZHANY Yu, CHAI Lihong, QIAN Qiongqiu, BAO Jinsong. Difference Analysis of the Physicochemical Properties of Wholemeal Flour From 14 Potato Varieties [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(7): 1593-1600. |
[11] | SHEN Chaoru, YANG Runmei, YUE Chuan, CAO Hongli. Cloning and Expression Analysis of Three MAPKKK Genes in Postharvest Processing of Tea Leaves [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1281-1290. |
[12] | CHE Yongmei, XU Qing, YANG Decui, ZHAO Fanggui, LU Songchong, LIU Xin. The Physiological and Molecular Mechanism of Nitrogen Metabolism in Haidao 86 in Response to Alkaline Stress [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1291-1299. |
[13] | LIU Yangping, WANG Jianhui, LIU Dongmin, LIU Yongle, HUANG Yiqun, WANG Faxiang, LI Xianghong, YU Jian. Optimization of Polyphenols Extraction From Lotus Seed Peel Waste and Its in Vitro Antioxidant Activities [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(6): 1376-1384. |
[14] | DU Qiaoli, FANG Yuanpeng, JIANG Junmei, SUN Tao, REN Mingjian, XIE Xin. Identification of Sorghum Non-Expressor of Pathogenesis Related Genes 1 Gene Family and Analysis of Their Expression Under Different Stresses [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1074-1083. |
[15] | GENG Yuhan, CHENG Chao, WU Yuehao, FANG Weiming, YANG Zhengfei, YIN Yongqi. Regulation of Ultraviolet and Heat Treatments Regulates on the Main Physio-Biochemical and Melatonin Enrichment in Mustard Sprouts [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(5): 1162-1169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||