Journal of Nuclear Agricultural Sciences ›› 2020, Vol. 34 ›› Issue (5): 982-993.DOI: 10.11869/j.issn.100-8551.2020.05.0982
• Induced Mutatuions for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
LI Chenyang1,2, KONG Xiangqiang1,2,*, DONG Hezhong1,2,*
Received:
2019-10-08
Online:
2020-05-10
Published:
2020-03-23
李晨阳1,2, 孔祥强1,2,*, 董合忠1,2,*
通讯作者:
*孔祥强,男,研究员,主要从事植物生理及分子生物学研究。E-mail: kongqiang_1995@163.com;董合忠,男,研究员,主要从事棉花栽培及育种研究。E-mial: donghezhong@163.com。同为通讯作者。
作者简介:
李晨阳,男,主要从事植物生理及分子生物学研究。E-mail: chenyangli1992a@163.com
基金资助:
国家自然科学基金(31971857),泰山学者青年专家(tsqn201812120),国家棉花产业技术体系(CARS-15-15)
LI Chenyang, KONG Xiangqiang, DONG Hezhong. Nitrate Uptake, Transport and Signaling Regulation Pathways[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(5): 982-993.
李晨阳, 孔祥强, 董合忠. 植物吸收转运硝态氮及其信号调控研究进展[J]. 核农学报, 2020, 34(5): 982-993.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2020.05.0982
[1] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F.Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85-122 [2] Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F.Nitrate transport and signalling in [3] Wang Y Y, Hsu P K, Tsay Y F.Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467 [4] Hsu P K, Tsay Y F.Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology, 2013, 163(2): 844-856 [5] Léran S, Edel K H, Pervent M, Hashimoto K, Corratgé-Faillie C, Offenborn J N, Tillard P, Gojon A, Kudla J, Lacombe B. Nitratesensing and uptake in [6] Liu K H, Tsay Y F.Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. Embo Journal, 2003, 22(5): 1005-1013 [7] Kotur Z, Mackenzie N, Ramesh S, Tyerman S D, Kaiser B N, Glass A D.Nitrate transport capacity of the [8] Feng H M, Yan M, Fan X R, Li B Z, Shen Q R, Miller A J, Xu G H.Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany, 2011, 62(7): 2319-2332 [9] Segonzac C, Boyer J C, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R.Nitrate efflux at the root plasma membrane: Identification of an [10] Kanno Y, Kamiya Y, Seo M.Nitrate does not compete with abscisic acid as a substrate of [11] Ho C H, Lin S H, Hu H C, Tsay Y F.CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194 [12] Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A.Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants[J]. Developmental Cell, 2010, 18(6): 927-937 [13] Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C.Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7): 834-838 [14] Morère-Le Paven M C, Viau L, Hamon A, Vandecasteele C, Pellizzaro A, Bourdin C, Laffont C, Lapied B, Lepetit M, Frugier F, Legros C, Limami A M. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume [15] Cerezo M, Tillard P, Filleur S, Muños S, Daniel-Vedele F, Gojon A.Major alterations of the regulation of root NO-3 uptake are associated with the mutation of [16] Menz J, Li Z, Schulze W X, Ludewig U.Early nitrogen-deprivation responses in [17] Lezhneva L, Kiba T, Feria-Bourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A. The [18] Lin S H, Kuo H F, Canivenc G, Lin C S, Lepetit M, Hsu P K, Tillard P, Lin H L, Wang Y Y, Tsai C B, Gojon A, Tsay Y F.Mutation of the [19] Li J Y, Fu Y L, Pike S M, Bao J, Tian W, Zhang Y, Chen C Z, Zhang Y, Li H M, Huang J, Li L G, Schroeder J Ⅰ, Gassmann W, Gong J M.The [20] Zhang G B, Yi H Y, Gong J M.The [21] Taochy C, Gaillard Ⅰ, Ipotesi E, Oomen R, Leonhardt N, Zimmermann S, Peltier J B, Szponarski W, Simonneau T, Sentenac H, Gibrat R, Boyer J C.The [22] Li Y G, Ouyang J, Wang Y Y, Hu R, Xia K F, Duan J, Wang Y Q, Tsay Y F, Zhang M Y.Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development[J]. Scientific Reports, 2015, 5: 9635 [23] Wang Y Y, Tsay Y F. [24] Chiu C C, Lin C S, Hsia A P, Su R C, Lin H L, Tsay Y F.Mutation of a nitrate transporter, AtNRT1.4, results in a reduced petiole nitrate content and altered leaf development[J]. Plant Cell Physiology, 2004, 45(5): 1139-1148 [25] Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F.The [26] He Y N, Peng J S, Cai Y, Liu D F, Guan Y, Yi H Y, Gong J M.Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in [27] Almagro A, Lin S H, Tsay Y F.Characterization of the [28] Chopin F, Orsel M, Dorbe M F, Chardon F, Truong H N, Miller A J, Krapp A, Daniel-Vedele F.The [29] Guo F Q, Young J, Crawford N M.The nitrate transporter [30] lvarezAr-agón R, Rodríguez-Navarro A. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in [31] Li B, Qiu J E, Jayakannan M, Xu B, Li Y, Mayo G M, Tester M, Gilliham M, Roy S J. [32] Tal Ⅰ, Zhang Y, Jørgensen M E, Pisanty O, Barbosa Ⅰ C, Zourelidou M, Regnault T, Crocoll C, Olsen C E, Weinstain R, Schwechheimer C, Halkier B A, Nour-Eldin H H, Estelle M, Shani E. The [33] Ishimaru Y, Oikawa T, Suzuki T, Takeishi S, Matsuura H, Takahashi K, Hamamoto S, Uozumi N, Shimizu T, Seo M, Ohta H, Ueda M.GTR1 is a jasmonic acid and jasmonoyl-l-isoleucine transporter in [34] Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M.Identification of [35] Wege S, Jossier M, Filleur S, Thomine S, Barbier-Brygoo H, Gambale F, Angeli A D.The proline 160 in the selectivity filter of the [36] von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U. CLC-b-mediated NO3-/H+ exchange across the tonoplast of [37] Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K.CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells[J]. Nature, 2008, 452(7186): 483-486 [38] Schäfer N, Maierhofer T, Herrmann J, Jørgensen M E, Lind C, von Meyer K, Lautner S, Fromm J, Felder M, Hetherington A M, Ache P, Geiger D, Hedrich R. A tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate[J]. Current Biology, 2018, 28(9): 1370-1379 [39] Vahisalu T, Kollist H, Wang Y F, Nishimura N, Chan W Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder J Ⅰ, Kangasjärvi J.SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling[J]. Nature, 2008, 452(7186): 487-491 [40] Geiger D, Maierhofer T, Al-Rasheid K A, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten Ⅰ, Grill E, Romeis T, Hedrich R. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1[J]. Science Signaling, 2011, 4(173): ra32 [41] Qi G N, Yao F Y, Ren H M, Sun S J, Tan Y Q, Zhang Z C, Qiu B S, Wang Y F.The S-Type Anion Channel ZmSLAC1 Plays Essential Roles in Stomatal Closure by Mediating Nitrate Efflux in Maize[J]. Plant and Cell Physiology, 2018, 59(3): 614-623 [42] Hu H C, Wang Y Y, Tsay Y F.AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response[J].The Plant Journal, 2009, 57(2): 264-278 [43] Mounier E, Pervent M, Ljung K, Gojon A, Nacry P.Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of [44] Krouk G.Nitrate signalling: Calcium bridges the nitrate gap[J]. Nature Plants, 2017, 3: 17095 [45] Riveras E, Alvarez J M, Vidal E A, Oses C, Vega A, Gutiérrez R A.The calcium ion is a second messenger in the nitrate signaling pathway of [46] Liu K H, Niu Y J, Konishi M, Wu Y, Du H, Sun Chung H, Li L, Boudsocq M, McCormack M, Maekawa S, Ishida T, Zhang C, Shokat K, Yanagisawa S, Sheen J. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316 [47] Castaings L, Camargo A, Pocholle D, Gaudon Ⅴ, Texier Y, Boutet-Mercey S, Taconnat L, Renou J P, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A.The nodule inception-like protein 7 modulates nitrate sensing and metabolism in [48] Marchive C, Roudier F, Castaings L, Bréhaut Ⅴ, Blondet E, Colot Ⅴ, Meyer C, Krapp A.Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4: 1713 [49] Konishi M, Yanagisawa S.The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19(1): 90 [50] Guan P, Ripoll J J, Wang R, Vuong L, Bailey-Steinitz L J, Ye D, Crawford N M. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of USA, 2017, 114(9): 2419-2424 [51] Yan D W, Easwaran Ⅴ, Chau Ⅴ, Okamoto M, Ierullo M, Kimura M, Endo A, Yano R, Pasha A, Gong Y C, Bi Y M, Provart N, Guttman D, Krapp A, Rothstein S J, Nambara E.NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in [52] Xu N, Wang R C, Zhao L F, Zhang C F, Li Z H, Lei Z, Liu F, Guan P Z, Chu Z H, Crawford N M, Wang Y.The [53] Medici A, Krouk G.The primary nitrate response: A multifaceted signalling pathway[J]. Journal of Experimental Botany, 2014, 65(19): 5567-5576 [54] Olas J J, Van Dingenen J, Abel C, Działo M A, Feil R, Krapp A, Schlereth A, Wahl Ⅴ.Nitrate acts at the [55] Liu F, Xu Y R, Chang K X, Li S N, Liu Z G, Qi S D, Jia J B, Zhang M, Crawford N M, Wang Y.The long noncoding RNA [56] Alvarez J M, Riveras E, Vidal E A, Gras D E, Contreras-López O, Tamayo K P, Aceituno F, Gómez Ⅰ, Ruffel S, Lejay L, Jordana X, Gutiérrez R A.Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of [57] Canales J, Contreras-Lopez O, Álvarez J M, Gutiérrez R A.Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in [58] Vidal E A, Moyano T C, Riveras E, Contreras-Lopez O, Gutierrez R A.Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of [59] Medici A, Marshall-Colon A, Ronzier E, Szponarski W, Wang R, Gojon A, Crawford N M, Ruffel S, Coruzzi G M, Krouk G.AtNIGT1/HRS1 integrates nitrate and phosphate signals at the [60] Huang S J, Liang Z H, Chen S, Sun H W, Fan X R, Wang C L, Xu G H, Zhang Y L.A Transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation[J]. Plant Physiology, 2019, 180(2): 882-895 [61] 丁庆倩, 王小婷, 胡利琴, 齐欣, 葛林豪, 徐伟亚, 徐兆师, 周永斌, 贾冠清, 刁现民, 闵东红, 马有志, 陈明. 谷子MYB类转录因子 [62] Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M.Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase[J]. Nature Communications, 2013, 4: 2191 [63] Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M.Nodule inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production[J]. Proceedings of the National Academy of Sciences of USA, 2014, 111(40): 14607-14612 [64] Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y.Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nature Plants, 2017, 3: 17029 [65] Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya Y N, Sawa S, Fukuda H, von Wirén N, Takahashi H. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. Proceedings of the National Academy of Sciences of USA, 2014, 111(5): 2029-2034 [66] Zhang J Y, Liu Y X, Zhang N, Hu B, Jin T, Xu H R, Qin Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C, Wang H, Qu B Y, Fan G Y, Yuan L X, Garrido-Oter R, Chu C C, Bai Y.NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676-684 [67] Fan X R, Tang Z, Tan Y W, Zhang Y, Luo B B, Yang M, Lian X M, Shen Q R, Miller A J, Xu G H.Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of USA, 2016, 113(26): 7118-7123 [68] Fang Z M, Bai G X, Huang W T, Wang Z X, Wang X L, Zhang M Y.The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield[J]. Frontiers in Plant Science, 2017, 8: 1338 [69] Brauer E K, Rochon A, Bi Y M, Bozzo G G, Rothstein S J, Shelp B J.Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1[J]. Plant Physiology, 2011, 141(4): 361-372 [70] Yu L H, Wu J, Tang H, Yuan Y, Wang S M, Wang Y P, Zhu Q S, Li S G, Xiang C B.Overexpression of [71] He X, Qu B Y, Li W J, Zhao X Q, Teng W, Ma W Y, Ren Y Z, Li B, Li Z S, Tong Y P.The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield[J]. Plant Physiology, 2015, 169(3): 1991-2005 [72] Qu B Y, He X, Wang J, Zhao Y Y, Teng W, Shao A, Zhao X Q, Ma W Y, Wang J Y, Li B, Li Z S, Tong Y P.A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input[J]. Plant Physiology, 2015, 167(2): 411-423 [73] Xia T M, Xiao D, Liu D, Chai W T, Gong Q Q, Wang N N.Heterologous expression of [74] Zhong L, Chen D D, Min D H, Li W W, Xu Z S, Zhou Y B, Li L C, Chen M, Ma Y Z.AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in [75] Yang D Q, Cai T, Luo Y L, Wang Z L.Optimizing plant density and nitrogen application to manipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat[J]. the Journal of Life and Environmental Sciences, 2019, 7: e6484 [76] 何梦迪, 钟宣伯, 周启政, 崔楠, 汪桂凤, 马武军, 唐桂香. 氮肥缓解苗期干旱对小麦根系形态建成及生理特性的影响[J]. 核农学报, 2019, 33(11): 2246-2253 [77] 郭增鹏, 董坤, 朱锦惠, 董艳. 施氮和间作对蚕豆锈病发生及田间微气候的影响[J]. 核农学报, 2019, 33(11): 2294-2302 [78] 刘宇辉, 张晴雯, 田秀平, 张爱平, 刘杏认, 杨正礼. 化肥减量配施菌肥对氮素矿化利用的影响[J]. 核农学报, 2019, 33(8): 1593-1601 [79] Yang G Z, Chu K Y, Tang H Y, Nie Y C, Zhang X L.Fertilizer15N accumulation, recovery and distribution in cotton plant as affected by N rate and split[J]. Journal of Integrative Agriculture, 2013, 12(6): 999-1007 [80] Singh B N, Dwivedi P, Sarma B K, Singh G S, Singh H B.A novel function of N-signaling in plants with special reference to |
[1] | DANG Wei, LI Xi, YE Gefei, WANG Haiyan, ZHANG Yuning, YANG Tiezhao, WU Zhaoyun, YANG Huijuan. Effect of NRE2 Element Deletion of Nitrate Reductase Gene Promoter on Nitrogen Metabolism in Tobacco [J]. Journal of Nuclear Agricultural Sciences, 2022, 36(2): 322-328. |
[2] | SHI Zongyong, LIU Xuan, LU Chao, GUO Junpei, XU Dongmei, ZHAO Juanli, YUAN Jianqin. Effect of Genetically Modified Soybean GTS40-3-2 on Major Organs and Reproductive Functions in Offspring Male Rats [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(12): 2821-2829. |
[3] | ZHI Yancai, LAI Xin, TAN Bingchang, WANG Xianfang, WANG Zhiwen, LI Jie, ZHANG Guilong. Adsorption of Nitrate by Iron, Manganese and Magnesium Ion Modified Biochars [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1588-1597. |
[4] | LIANG Min, XU Xing, DING Xiangzhen, LI Zhiying, ZHENG Rui, YANG Shujuan, MAO Guilian. Effects of Salt Stress on Na+Uptake and Expression of Na+/H+Transporter and H+-ATPase Genes in Lycium barbarum L. [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 745-751. |
[5] | ZHANG Xiaofang, QIAO Yake, WANG Bingbing, XU Yan, ZHANG Kai, LI Guilan. Sequence Analysis of ABC Transporter Transcriptome in Wild Soybean Under the Drought Stress [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(8): 1474-1482. |
[6] | GE Shunfeng, XIA Ying, SHEN Hongyan, ZHANG Lili, YAO Yaqian, LIU Songzhong, JIANG Yuanmao. Utilization Characteristics of$NO^{-}_{3}-^{15}$N and $NH^{+}_{4}-{15}$N for Four Pear Seedlings [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(4): 766-771. |
[7] | SHI Bowen, LAI Xin, LI Jie, TIAN Xiuping, ZHANG Guilong. Effect of Interaction Between Manure and Urea on Transformation of Nitrogen in Brown Red Soil [J]. Journal of Nuclear Agricultural Sciences, 2017, 31(5): 938-945. |
[8] | TAO Yi, WANG Yingge, LI Hongjie, LI Wanchen, FU Fengling. Upstream Messengers of Abscisic Acid Signaling Pathway in Plant [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(9): 1722-1730. |
[9] | HE Xin, ZHANG Cunzheng, LIU Xianjin, LU Haiyan, LIANG Ying. Effect of Exogenous Calcium Nitrate on Dynamic Growth and Nutrient Absorption of Hydroponic Lettuce [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(12): 2460-2466. |
[10] | CHEN Delong, YE Yingwei, LIU Lihong, ZHANG Min, LIU Tianyu, WANG Qiaomei. Phytohormone Signaling Network in Plant Guard Cells [J]. Journal of Nuclear Agricultural Sciences, 2016, 30(1): 65-71. |
[11] | DONG Lianhong, SHI Sujuan, M Nuruzzaman, SU Yulong, LIU Chaoke, FENG Xiangguo, HU Xiaoming, WANG Qian, LIU Haobao. Advances in Research of CBL Family in Plant [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(5): 892-898. |
[12] | LIU Yang, LI Caifeng, HONG Xin, XU Ying, GUO Jian, CHEN Ming, YU Yang, WANG Yubo, MA Fengming. Effects of Saline-alkali Stress on Nitrogen Metabolism Activity and Root Yield and Sugar Content of Suger Beet [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(2): 397-404. |
[13] | DAI Lingyan, TANG Chengrui, YIN Kuide, DU Jidao, LI Ming, FU Nan. Cloning, Expression and Bioinformatics Analysis of SUT1 Gene in Sweet Sorghum [J]. Journal of Nuclear Agricultural Sciences, 2015, 29(12): 2276-2286. |
[14] | WU Yan, GENG Shu-de, SHI Chang-jiang, CEN Ming-long, WANG Xue-juan, LIAN Hong-yan. Effects of DA-6 on Growth and Leaf Nitrogen Metabolism of Dendranthema morifolium cv ‘chuju’Seedlings [J]. Journal of Nuclear Agricultural Sciences, 2014, 28(12): 2283-2289. |
[15] | LIU Lin, ZHANG Ying-xin, LIU Qun-en, LI Zhi, CAO Li-yong. Plant Lesion Mimic Mutants and Their Signaling Pathways [J]. Journal of Nuclear Agricultural Sciences, 2014, 28(10): 1811-1818. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||