Journal of Nuclear Agricultural Sciences ›› 2020, Vol. 34 ›› Issue (1): 62-70.DOI: 10.11869/j.issn.100-8551.2020.01.0062
• Induced Mutations for Plant Breeding·Agricultural Biotechnology • Previous Articles Next Articles
FENG Yalan, XIONG Ying, ZHANG Jun, YUAN Jiale, CAI Aishan, MA Chao*
Received:
2018-06-15
Online:
2020-01-10
Published:
2019-11-05
冯雅岚, 熊瑛, 张均, 原佳乐, 蔡艾杉, 马超*
通讯作者:
*,马超,男,副教授,主要从事作物逆境生物学研究。E-mail: machao840508@163.com
作者简介:
冯雅岚,女,副教授,主要从事作物分子生物学研究。E-mail: fengyalan2004@163.com
基金资助:
FENG Yalan, XIONG Ying, ZHANG Jun, YUAN Jiale, CAI Aishan, MA Chao. Role of Alternative Splicing in Plant Development and Abiotic Stress Responses[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 62-70.
冯雅岚, 熊瑛, 张均, 原佳乐, 蔡艾杉, 马超. 可变剪切在植物发育和非生物胁迫响应中的作用[J]. 核农学报, 2020, 34(1): 62-70.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnxb.org.cn/EN/10.11869/j.issn.100-8551.2020.01.0062
[1] Kahles A, Ong C S, Zhong Y, Rätsch G.SplAdder: Identification, quantification and testing of alternative splicing events from RNA-Seq data[J]. Bioinformatics, 2016, 32(12):1840-1847 [2] Reddy A S N, Marquez Y, Kalyna M, Barta A. Complexity of the alternative splicing landscape in plants[J]. The Plant Cell, 2013, 25(10):3657-3683 [3] Slotte T, Huang H R, Holm K, Ceplitis A, Onge K S, Chen J, Lagercrantz U, Lascoux M.Splicing variation at a FLOWERING LOCUS C homeolog is associated with flowering time variation in the tetraploid Capsella bursa-pastoris[J]. Genetics, 2009, 183(1):337-345 [4] Mastrangelo A M, Marone D, Laidò G, Leonardis A M D, Vita P D. Alternative splicing: Enhancing ability to cope with stress via transcriptome plasticity[J]. Plant Science, 2012, 185:40-49 [5] Staiger D, Brown J W S. Alternative splicing at the intersection of biological timing, development, and stress responses[J]. The Plant Cell, 2013, 25(10):3640-3656 [6] Swarup R, Crespi M, Bennett M J.One gene, many proteins: Mapping cell-specific alternative splicing in plants[J]. Developmental Cell, 2016, 39(4):383-385 [7] Berget S M, Moore C, Sharp P A.Spliced segments at the 5'terminus of adenovirus 2 late mRNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(8):3171-3175 [8] Han H, Braunschweig U, Pournatzis T G, Weatheritt R J, Hirsch C L, Ha K C H, Radovani E, Shah S N, Weiler T S, Wang J, Dave O’Hanlon, Pan Q, Ray D, Zheng H, Vizeacoumar F, Datti A, Magomedova L, Cummins C L, Hughes T R, Greenblatt J F, Wrana J L, Moffat J, Blencowe B J. Multilayered control of alternative splicing regulatory networks by transcription factors[J]. Molecular Cell, 2017, 65(3):539-553 [9] Pan Q, Shai O, Lee L J, Frey B J, Blencowe B J.Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing[J]. Nature Genetics, 2008, 40(12):1413-1415 [10] Wang E T, Sandberg R, Luo S, Khrebtukova Ⅰ, Zhang L, Mayr C, Kingsmore S F, Schroth G P, Burge C B.Alternative isoform regulation in human tissue transcriptomes[J]. Nature, 2008, 456(7221):470-476 [11] Marquez Y, Brown J W S, Simpson C, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in [12] Lu T L, Lu G J, Fan D L, Zhu C R, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y L, Li W J, Huang X H, Han B.Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq[J]. Genome Research, 2010, 20(9):1238-1249 [13] Chen W, Moore M J.Spliceosomes[J]. Current Biology, 2015, 25(5):181-183 [14] Furlong R.Scrutinizing spliceosomes[J]. Nature Reviews Genetics, 2018, 19(7): 401 [15] Cáceres J F, Misteli T, Screaton G R, Spector D L, Krainer A R.Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity[J]. The Journal of Cell Biology, 1997, 138(2):225-238 [16] Wu J Y, Maniatis T.Specific interactions between proteins implicated in splice site selection and regulated alternative splicing[J]. Cell, 1993, 75(6):1061-1070 [17] Shin C, Feng Y, Manley J L.Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock[J]. Nature, 2004, 427:553-558 [18] Li S, Yamada M, Han X, Ohler U, Benfey P N.High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation[J]. Developmental Cell, 2016, 39(4):508-522 [19] Zhang X, Mount S M.Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development[J]. Plant Physiology, 2009, 150(3):1450-1458 [20] Airoldi C A, Bergonzi S, Davies B.Single amino acid change alters the ability to specify male or female organ identity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44):18898-18902 [21] Severing E Ⅰ, Dijk A D J V, Morabito G, Lange J B, Immink R G H, Ham R C H J V. Predicting the impact of alternative splicing on plant MADS domain protein function[J]. PLoS One, 2012, 7:e30524 [22] Nicholson P, Mühlemann O.Cutting the nonsense: The degradation of PTC-containing mRNAs[J]. Biochemical Society Transactions, 2010, 38(6):1615-1620 [23] Ottens F, Gehring N H.Physiological and pathophysiological role of nonsense-mediated mRNA decay[J]. Pflügers Archiv-European Journal of Physiology, 2016, 468(6):1013-1028 [24] Dinesh-Kumar S P, Baker B J. Alternatively spliced N resistance gene transcripts: Their possible role in tobacco mosaic virus resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4):1908-1913 [25] Zhang X, Gassmann W.RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames[J]. The Plant Cell, 2003, 15(10):2333-2342 [26] Andrés F, Coupland G.The genetic basis of flowering responses to seasonal cues[J]. Nature Reviews Genetics, 2012, 13:627-639 [27] Feng Y L, Kong B B, Zhang J, Chen X N, Yuan J L, Tang X W, Ma C.Proteomic analysis of vernalization responsive proteins in winter wheat Jing841[J]. Protein and Peptide Letters, 2018, 25(3):260-274 [28] Bastow R, Mylne J S, Lister C, Lippman Z, Martienssen R A, Dean C.Vernalization requires epigenetic silencing of FLC by histone methylation[J]. Nature, 2004, 427:164-167 [29] Rosloski S M, Singh A, Jali S S, Balasubramanian S, Weigel D, Grbic Ⅴ.Functional analysis of splice variant expression of MADS AFFECTING FLOWERING 2 of [30] Posé D, Verhage L, Ott F, Mathieu J, Angenent G C, Immink R G H, Schmid M. Temperature dependent regulation of flowering by antagonistic FLM variants[J]. Nature, 2013, 503(7476):414 [31] Song H R, Song J D, Cho J N, Amasino R M, Noh B, Noh Y S.The RNA binding protein ELF9 directly reduces [32] McClung C R. Plant circadian rhythms[J]. The Plant Cell, 2006, 18:792-803 [33] Herrero E, Davis S J.Time for a nuclear meeting: Protein trafficking and chromatin dynamics intersect in the plant circadian system[J]. Molecular Plant, 2012, 5(3):554-565 [34] Filichkin S A, Priest H D, Givan S A, Shen R, Bryant D W, Fox S E, Wong W K, Mockler T C.Genome-wide mapping of alternative splicing in [35] Walters B, Lum G, Sablok G, Min X J.Genome-wide landscape of alternative splicing events in [36] Filichkin S A, Mockler T C.Unproductive alternative splicing and nonsense mRNAS: A widespread phenonenan amang plant circadian clock genes[J]. Biology Direct, 2012, 7(1): 20 [37] Yuan Y, Chung J D, Fu X, Johnson V E, Ranjan P, Booth S L, Harding S A, Tsai C J.Alternative splicing and gene duplication differentially shaped the regulation of isochorismate synthase in [38] James A B, Syed N H, Bordage S, Marshall J, Nimmo G A, Jenkins G Ⅰ, Herzyk P, Brown J W S, Nimmo H G. Alternative splicing mediates responses of the Arabidopsis circadian clock to temperature changes[J]. The Plant Cell, 2012, 24(3):961-981 [39] Seo P J, Park M J, Lim M H, Kim S G, Lee M, Baldwin Ⅰ T, Park C M.A self-regulatory circuit of CIRCADIAN CLOCK-ASSOCIATED1 underlies the circadian clock regulation of temperature responses in [40] Hong S, Song H R, Lutz K, Kerstetter R A, Michael T P, McClung C R. Type Ⅱ protein arginine methyltransferase 5 (PRMT5) is required for circadian period determination in [41] Shen Y, Wu X, Liu D, Song S, Liu D, Wang H.Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in [42] Hazen S P, Naef F, Quisel T, Gendron J M, Chen H, Ecker J R, Borevitz J O, Kay S A.Exploring the transcriptional landscape of plant circadian rhythms using genome tiling arrays[J]. Genome Biology, 2009, 10:R17 [43] Koo S C, Yoon H W, Kim C Y, Moon B C, Cheong Y H, Han H J, Lee S M, Kang K Y, Kim M C, Lee S Y, Chung W S, Cho M J.Alternative splicing of the [44] Palusa S G, Ali G S, Reddy A S N. Alternative splicing of pre-mRNAs of Arabidopsis serine/arginine-rich proteins: Regulation by hormones and stresses[J]. The Plant Journal, 2007, 49(6):1091-1107 [45] Lee B H, Kapoor A, Zhu J, Zhu J K.STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in [46] Bourgon L, Amorós B, Naranjo M, Vicente O.Drought and salt tolerance conferred by overexpression of splicing factors in transgenic plants[J]. Bulletin USAMV-CN, 2007, 64:1-6 [47] Egawa C, Kobayashi F, Ishibashi M, Nakamura T, Nakamura C, Takumi S.Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat[J]. Genes and Genetic Systems, 2006, 81(2):77-91 [48] Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K.Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes[J]. Molecular Genetics and Genomics, 2010, 283(2):185-196 [49] 赵真真, 韩莹琰, 范双喜, 刘超杰, 郝敬虹, 李婷, 李雅博. 叶用莴苣热激蛋白基因LsHsp70-3701的克隆及高温胁迫下的表达分析[J]. 核农学报, 2016, 30(6):1083-1090 [50] 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展[J]. 生物技术通报, 2016, 32(2):7-13 [51] 田尉婧, 殷学仁, 鲜李, 陈昆松. 热激转录因子调控植物逆境响应研究进展[J]. 园艺学报, 2017, 44(1):179-192 [52] Keller M, Hu Y, Mesihovic A, Fragkostefanakis S, Schleiff E, Simm S.Alternative splicing in tomato pollen in response to heat stress[J]. DNA Research, 2017, 24(2):205-217 [53] Kannan S, Halter G, Renner T, Waters E R. Patterns of alternative splicing vary between species during heat stress[J]. Annals of Botany Plants, 2018, 10(2):ply013 [54] Chang C, Lin W D, Tu S L.Genome-wide analysis of heatsensitive alternative splicing in [55] 刘锴, 习岗, 贺瑞瑞, 余宁梅. 渗透胁迫下玉米叶片电位波动边际谱的变化与意义[J]. 农业工程学报, 2017, 33(1):199-205 [56] Vitulo N, Forcato C, Carpinelli E C, Telatin A, Campagna D, D'Angelo M, Zimbello R, Corso M, Vannozzi A, Bonghi C, Lucchin M, Valle G. A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype[J]. BMC Plant Biology, 2014, 14(1):99 [57] Thatcher S R, Danilevskaya O N, Meng X, Beatty M, Zastrow-Hayes G, Harris C, Allen B Ⅴ, Habben J, Li B.Genome-wide analysis of alternative splicing during development and drought stress in maize[J]. Plant Physiology, 2016, 170(1):586-599 [58] Ding F, Cui P, Wang Z Y, Zhang S D, Ali S, Xiong L M.Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis[J]. BMC Genomics, 2014, 15(1):431 [59] Forment J, Naranjo M Á, Roldán M, Serrano R, Vicente O.Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants[J]. The Plant Journal, 2002, 30(5):511-519 [60] Fu X.The superfamily of arginine/serine-rich splicing factors[J]. RNA, 1995, 1(7):663-680 [61] Neugebauer K M, Stolk J A, Roth M B.A conserved epitope on a subset of SR proteins defines a larger family of pre-mRNA splicing factors[J]. Journal of Cell Biology, 1995, 129(4):899-908 [62] 李小双, 梁玉青, 高贝, 杨红兰, 张道远. 植物抗逆相关转录因子基因DREB的研究展望[J]. 分子植物育种, 2017, 14(7):2612-2622 [63] Terashima A, Takumi S.Allopolyploidization reduces alternative splicing efficiency for transcripts of the wheat DREB2 homolog, WDREB2[J]. Genome, 2009, 52(1):100-105 [64] 石晓雯, 贺立恒, 焦晋华, 刘霞宇, 王婷, 刘世芳, 贾小云, 李润植. 甘薯二倍体近缘野生种三裂叶薯MYB转录因子全基因组分析及逆境胁迫响应[J]. 核农学报, 2018, 32(7):1338-1348 [65] 陈娜, 迟晓元, 程果, 潘丽娟, 陈明娜, 王通, 王冕, 杨珍, 禹山林. 花生中低温胁迫相关转录因子基因的筛选[J]. 核农学报, 2016, 30(1):19-27 [66] 冯勋伟. 冷胁迫信号转录因子CBF的研究进展[J]. 北京农业, 2014(6):3-4 [67] Seo P J, Hong S Y, Kim S G, Park C M.Competitive inhibition of transcription factors by small interfering peptides[J]. Trends in Plant Science, 2011, 16(10):541-549 [68] Baxevanis A D, Vinson C R.Interactions of coiled coils in transcription factors: Where is the specificity?[J]. Current Opinion in Genetics and Development, 1993, 3(2):278-285 [69] Staudt A C, Wenkel S.Regulation of protein function by ‘microProteins’[J]. EMBO Reports, 2010, 12(1):35-42 [70] Seo P J, Park M J, Park C M.Alternative splicing of transcription factors in plant responses to low temperature stress: Mechanisms and functions[J]. Planta, 2013, 237(6):1415-1424 [71] Scharfa K D, BerberichbIngo T, LutzNover E. The plant heat stress transcription factor (Hsf) family: Structure, function and evolution[J]. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2012, 1819(2):104-119 [72] He Z S, Xie R, Zou H S, Wang Y Z, Zhu J B, Yu G Q.Structure and alternative splicing of a heat shock transcription factor gene, MsHSF1, in Medicago sativa[J]. Biochemical and Biophysical Research Communications, 2007, 364(4):1056-1061 [73] Sugio A, Dreos R, Aparicio F, Maule A J.The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis[J]. The Plant Cell, 2009, 21(2):642-654 [74] Cheng Q, Zhou Y, Liu Z, Zhang L, Song G, Guo Z, Wang W, Qu X, Zhu Y, Yang D.An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stressinduced unfolded protein response in rice[J]. Plant Biology, 2015, 17(2):419-429 [75] Wunderlich M, Groß-Hardt R, Schöffl F.Heat shock factor HSFB2a involved in gametophyte development of [76] Lee S S, Jung W Y, Park H J, Lee A, Kwon S-Y, Kim H-S, Cho H S.Genome-wide analysis of alternative splicing in an inbred cabbage( [77] Nakabayashi K, Bartsch M, Ding J, Soppe W J J. Seed dormancy in Arabidopsis requires self-binding ability of DOG1 protein and the presence of multiple isoforms generated by alternative splicing[J]. PLoS Genetics, 2015, 11:e1005737 [78] Liu Z S, Qin J X, Tian X J, Xu S B, Wang Y, Li H X, Wang X M, Peng H R, Yao Y Y, Hu Z R, Ni Z F, Xin M M, Sun Q X.Global profiling of alternative splicing landscape responsive to drought, heat and their combination in wheat ( |
[1] | FENG Yalan, YIN Fei, XU Ke, JIA Xiaoyi, ZHOU Shuang, MA Chao. Role of Sucrose Metabolism and Signal Transduction in Plant Development and Stress Response [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(9): 2044-2055. |
[2] | LI Hui, YANG Yaling, LI Cong, LI Lihong, HAN Zhanpin, WANG Chunguo. Expression and Function of Cauliflower BobERF17, A Member of the AP2/ERF Transcription Factor Family, In Response To Abiotic Stresses [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(8): 1794-1801. |
[3] | JIN Cong, GUO Qiaohui, CHEN Guodong, SUN Xiaochuan, SUN Min, ZHOU Jin, WANG Jizhong, HUANG Xiaosan. Cloning and Expression Analysis of PbADC in Pyrus betulifolia [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(2): 306-313. |
[4] | XU He, LIANG Chengwei, CHEN Mingna, CHEN Na, WANG Tong, YUAN Mei, PAN Lijuan, CHI Xiaoyuan. Cloning and Expression Analysis of Lipid Phosphate Phosphatase (LPP) Gene Family in Peanut [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(2): 324-337. |
[5] | TIE Yuanyu, TIAN Jie. Cloning and Expression Analysis of Sucrose: Sucrose 1-Fructosyltransferase As-1-SST Gene in Garlic [J]. Journal of Nuclear Agricultural Sciences, 2021, 35(11): 2501-2511. |
[6] | ZHAO Jinfeng, DU Yanwei, WANG Gaohong, LI Yanfang, ZHAO Genyou, YU Aili. Response to Abiotic Stresses of SiCIPK Gene (Seita.5G145900) in Foxtail Millet [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(4): 698-704. |
[7] | SHANG Kehan, YANG Shuting, BIAN Shicun, LIU Mengting, AN Yahong, WANG Guanglong, XIONG Aisheng. Cloning of an Aquaporin Gene AgPIP2;1 From Celery and Its Response to Abiotic Stresses [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(2): 231-239. |
[8] | HAN Miaohua, TENG Ruimin, LI Hui, LIU Hao, LIN Shijia, ZHUANG Jing. Cloning of CsDREB-A2 Transcription Factor Gene and It's Response to Abiotic Stress in Camellia sinensis [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(12): 2647-2657. |
[9] | ZHAO Jinfeng, DU Yanwei, YU Aili. Study on the Abiotic Stress Response Characteristics of MDH Gene in Foxtail Millet (Setaria italica) [J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 2152-2160. |
[10] | YE Xinru, ZHU Haisheng, LIN Hui, LIU Jiangting, WANG Bin, CHEN Mindong, WEN Qingfang. Screening and Evaluation of Reference Genes for RT-qPCR in Wax Gourd (Benincasa hispida Cogn.) [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(3): 473-481. |
[11] | WANG Yahui, LI Tong, HUANG Ying, LIU Jiexia, WANG Feng, XIONG Aisheng. Cloning and Expression Analysis Under Biotic and Abiotic Stressesof Two ERF-B1 Group Transcription Factor Genes From Solanum lycopersicum [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 1893-1904. |
[12] | HAN Wenyu, LI Guorui, FENG Lan, YAN Xingyi, BAI Yingjun, LI Mengjian, SUN Jiaxin, CHEN Yongsheng. Genome-wide Characterization Analysis of WOX Transcription Factors and Response to Abiotic Stresses in Ricinus communis L. [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(10): 1921-1927. |
[13] | SHI Xiaowen, HE Liheng, JIAO Jinhua, LIU Xiayu, WANG Ting, LIU Shifang, JIA Xiaoyun, LI Runzhi. Genome-wide Characterization of MYB Transcription Factors and Response to Abiotic Stresses in Ipomoea triloba [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1338-1348. |
[14] | SUN Zhichao,XIE Yan,YANG Fan,HUANG Lu,XIA Aihua,YANG Guiming,LI Jisheng. Expression Analysis of MiR164 and Its Target Gene NAC in Response to Mannitol and NaCl Stresses in Mulberry [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(5): 856-863. |
[15] | LIN Tianzi, SUN Liting, JING Dedao, QIAN Huafei, YU Bo, ZENG Shengyuan, LI Chuang, GONG Hongbing. Characterization and Gene Mapping of a Yellow Green Leaf Mutant ygl14(t) in Rice [J]. Journal of Nuclear Agricultural Sciences, 2018, 32(2): 216-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||