[1] Cook B Ⅰ, Smerdon J E, Seager R, Coats S.Global warming and 21st century drying[J]. Climate Dynamics, 2014, 43(9/10): 2607-2627 [2] Dai A.Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2012, 3(1): 52-58 [3] Passioura J B, Angus J F.Improving productivity of crops in water-limited environments[J]. Advances in Agronomy, 2010, 106(10): 37-75 [4] 戴君虎, 王梦麦, 王焕炯, 白洁, 崔海亭. 近50年中国西北东部半湿润、半干旱过渡带气候变化及生态影响[J]. 第四纪研究, 2010, 29(3): 920-930 [5] 侯贤清,李荣,何文寿,马琨,代晓华. 保水剂对旱作马铃薯产量及水分利用效率的影响[J]. 核农学报, 2018, 32(5): 1016-1022 [6] 雷俊, 张凯, 姚玉璧, 牛海洋, 石界, 李强, 李文举, 赵鸿. 半干旱区黑膜覆盖对马铃薯光合特性及产量的影响[J]. 干旱气象, 2017, 35(6):1036-1041 [7] 温斐斐, 孙敏, 邓联峰, 赵维峰, 高志强. 旱地小麦休闲期深翻覆盖对土壤水分及其利用效率的影响[J]. 中国生态农业学报, 2013, 21(7): 1358-1364 [8] Linderson M L, Mikkelsen T N, Ibrom A, Lindroth A, Ro-Poulsen H, Pilegaard K.Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in canopy light distribution[J]. Agricultural and Forest Meteorology, 2012, 152: 201-211 [9] 杨文平, 郭天财, 刘胜波, 朱云集, 王晨阳, 王永华. 两种穗型冬小麦品种旗叶光合特性和水分利用对光强的响应[J]. 华北农学报, 2008, 23(2): 9-11 [10] 魏小平, 王根轩, 吴冬秀. 干旱和CO2浓度升高对不同春小麦光合作用和气孔阻力及水分蒸腾效率的影响[J]. 兰州大学学报(自然科学版), 2005, 41(6): 42-46 [11] 王晨光, 郝兴宇, 李红英,韩洲怀,韩雪,宗毓铮,李萍. CO2浓度升高对大豆光合作用和叶绿素荧光的影响[J]. 核农学报, 2015, 29(8):1583-1588 [12] Wong S C, Cowan Ⅰ R, Farquhar G D.Leaf conductance in relation to rate of CO2 assimilation. Ⅲ. Influences of water stress and photoinhibition[J]. Plant physiology, 1985, 78(4): 830-834 [13] Fischer R A, Turner N C.Plant productivity in the arid and semiarid zones[J]. Annual of Review Plant Physiology, 1978, 29(1): 277-317 [14] Wong S C, Cowan Ⅰ R, Farquhar G D.Stomatal conductance correlates with photosynthetic capacity[J]. Nature, 1979, 282(5737): 424-426 [15] Ball J T, Woodrow I E, Berry J A.A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions[C]//Progress in Photosynthesis Research: Proceedings of the VIIth International Congress on Photosynthesis,Rhode Island: Springer,1987: 221-224 [16] Leuning R.A critical appraisal of a combined stomatal-photosynthesis model for C3 plants[J]. Plant Cell and Environment, 1995, 18(4): 339-355 [17] Medlyn B E, Duursma R A, Eamus D, Ellsworth D S, Prentice Ⅰ C, Barton C Ⅴ M, Crous K Y, Angelis P, Freeman M, Wingate L. Reconciling the optimal and empirical approaches to modelling stomatal conductance[J]. Global Change Biology, 2011, 17(6): 2134-2144 [18] Collatz G J, Ball J T, Grivet C, Berry J A.Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration-a model that includes a laminar boundary-layer[J]. Agricultural and Forest Meteorolology, 1991, 54(2/3/4): 107-136 [19] Baldocchi D.An analytical solution for coupled leaf photosynthesis and stomatal conductance models[J]. Tree Physiology, 1994, 14(7/8/9): 1069-1079 [20] Tuzet A, Perrier A, Leuning R.A coupled model of stomatal conductance, photosynthesis and transpiration[J]. Plant Cell and Environment, 2003, 26(7): 1097-1116 [21] Yu Q, Zhang Y G, Liu Y F, Shi P L.Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes[J]. Annual Botony London, 2004, 93(4): 435-441 [22] Sellers P J, Dickinson R E, Randall D A, Betts A K.Modeling the exchanges of energy, water, and carbon between continents and the atmosphere[J]. Science, 1997, 275(5299): 502-509 [23] Xu L K, Baldocchi D D.Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature[J]. Tree Physiology, 2003, 23(13): 865-877 [24] Tenhunen J D, Serra A S, Harley P C, Dougherty R L, Reynolds J F.Factors influencing carbon fixation and water use by mediterranean sclerophyll shrubs during summer drought[J]. Oecologia, 1990, 82(3): 381-393 [25] Brodribb T.Dynamics of changing intercellular CO2 concenTration (Ci) during drought and determination of minimum functional ci[J]. Plant Physiology, 1996, 111(1): 179-187 [26] Baldocchi D D.Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought[J]. Plant Cell Environment, 1997, 20(9): 1108-1122 [27] Gutschick Ⅴ P, Simonneau T.Modelling stomatal conductanceof field-grown sunflower under varying soil water content and leafenvironment: comparison of three models of stomatal response toleaf environment and coupling with an abscisic acid-based modelof stomatal response to soil drying[J]. Plant Cell and Environment, 2002, 25(11): 1423-1434 [28] Medrano H, Esalona J M, Bota J, Gulias J, Flexas J.Regulation of photosynthesis of C3 plant in response to progressive drought: Stomatal conductance as a reference parameter[J]. Annual Botany, 2002, 89(7):895-905 [29] Lin Y S, Medlyn B E, Duursma R A, Prentice Ⅰ C, Wang H, Baig S, Eamus D, Dios Ⅴ R D, Mitchell P, Ellsworth D S. Optimal stomatal behaviour around the world[J]. Nature Climate Change, 2015, 5(5): 324-330 [30] 任鸿瑞, 罗毅. 鲁西北平原冬小麦和夏玉米耗水量的实验研究[J]. 灌溉排水学报, 2004, 23(4):37-39 [31] Broeckx L S, Fichot R, Verlinden M S, Ceulemans R.Seasonal variations in photosynthesis, in trinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation[J]. Tree Physiology, 2014, 34(7): 701 [32] Cifre J, Bota J, Escalona J M, Medrano H, Flexas J.Physiological tools for irrigation scheduling in grapevine (Vitis vinifera L.): An open gate to improve water-use efficiency?[J]. Agriculture Ecosystems and Environment, 2005, 106(2/3): 159-170 [33] Nikolov N T, Massman W J, Schoettle A W.Coupling biochemical and biophysical processes at the leaf level: An equilibrium photosynthesis model for leaves of C3 plants[J]. Ecology Model, 1995, 80(2/3): 205-235 [34] Trevor K, Santi S, Carlos G.Soil water stress and coupled photosynthesis-conductance models: Bridging the gap between conflicting reports on the relative roles of stomatal, mesophyll conductance and biochemical limitations to photosynthesis[J]. Agricultural and Forest Meteorology, 2010, 150(3): 443-453 [35] Egea G, Verhoef A, Vidale P L.Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models[J]. Agricultural and Forest Meteorology, 2011, 151(10): 1370-1384 [36] Damour G, Simonneau T, Cochard H, Urban L.An overview of models of stomatal conductance at the leaf level[J]. Plant Cell Environment, 2010, 33(9): 1419-1438 [37] Gilbert M E, Zwieniecki M A, Holbrook N M.Independent variation in photosynthetic capacity and stomatal conductance leads to differences in intrinsic water use efficiency in 11 soybean genotypes before and during mild drought[J]. Journal Experiment Botany, 2011, 62(8): 2875-2887 [38] Singh S K, Reddy K R.Regulation of photosynthesis, fluorescence, stomatal conductance and water-use efficiency of cowpea under drought[J]. Journal of Photochemistry and Photobiology B: Biology, 2011, 105(1): 40-50 [39] Zheng H, Zhang X, Ma W, Song J, Rahman S U, Wang J, Zhang Y.Morphological and physiological responses to cyclic drought in two contrasting genotypes of Catalpa bungei[J]. Environmental and Experimental Botany, 2017, 138: 21-32 |