[1] Holton T A, Cornish E C.Genetics and biochemistry of anthocyanin biosynthesis[J]. Plant Cell, 1995, 7(7): 1071-1083 [2] Bajpai A, Khan K, Muthukumar M, Rajan S, Singh N K.Molecular analysis of anthocyanin biosynthesis pathway genes and their differential expression in mango peel[J]. Genome, 2018, 61(3): 157-166 [3] Boss P K, Davies C, Robinson S P.Expression of anthocyanin biosynthesis pathway genes in red and white grapes[J]. Plant Molecular Biology, 1996, 32(3): 565-569 [4] Pfeiffer J, Kühnel C, Brandt J, Duy D, Punyasiri P A N, Forkmann G, Fischer T C. Biosynthesis of flavan 3-ols by leucoanthocyanidin 4-reductases and anthocyanidin reductases in leaves of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crops[J]. Plant Physiology and Biochemistry, 2006, 44(5/6): 323-334 [5] Wu X, Gong Q, Ni X, Zhou Y, Gao Z.UFGT: The key enzyme associated with the petals variegation in Japanese apricot[J]. Frontiers in Plant Science, 2017, 8: 108 [6] Poudel P R, Goto-Yamamoto N, Mochioka R, Kataoka Ⅰ, Beppu K.Expression analysis of UDP-glucose: Flavonoid 3-O-glucosyltransferase (UFGT) gene in an interspecific hybrid grape between Vitis ficifolia var. ganebu and Vitis vinifera cv. Muscat of Alexandria[J]. Plant Biotechnology Reports, 2008, 2(4): 233-238 [7] Zhao Z C, Hu G B, Hu F C, Wang H C, Yang Z Y, Lai B.The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration[J]. Molecular Biology Reports, 2012, 39(6): 6409-6415 [8] 丁体玉, 曹珂, 方伟超, 朱更瑞, 陈昌文, 王新卫, 王力荣. 红肉桃两类花色素苷积累模式与相关基因表达差异[J]. 中国农业科学, 2017, 50(13): 2553-2563 [9] Hu C, Gong Y, Jin S, Zhu Q.Molecular analysis of a UDP-glucose: Flavonoid 3-O-glucosyltransferase (UFGT) gene from purple potato (Solanum tuberosum)[J]. Molecular Biology Reports, 2011, 38(1): 561-567 [10] Li J, Lv X, Wang L, Qiu Z, Song X, Lin J, Chen W.Transcriptome analysis reveals the accumulation mechanism of anthocyanins in ‘Zijuan’ tea (Camellia sinensis var. asssamica (Masters) kitamura) leaves[J]. Plant Growth Regulation, 2017, 81(1): 51-61 [11] Ayenew B, Degu A, Manela N, Perl A, Shamir M O, Fait A.Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses[J]. Frontiers in Plant Science, 2015, 6: 728 [12] Enoki S, Hattori T, Ishiai S, Tanaka S, Mikami M, Arita K, Nagasaka S, Suzuki S.Vanillylacetone up-regulates anthocyanin accumulation and expression of anthocyanin biosynthetic genes by inducing endogenous abscisic acid in grapevine tissues[J]. Journal of Plant Physiology, 2017, 219: 22-27 [13] Ford C M, Boss P K, Høj P B.Cloning and characterization of Vitis vinifera UDP-glucose: Flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the Maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo[J]. The Journal of Biological Chemistry, 1998, 273(15): 9224-9233 [14] Offen W, Martinez-Fleites C, Yang M, Kiat-Lim E, Davis B G, Tarling C A, Ford C M, Bowles D J, Davies G J.Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification[J]. The EMBO Journal, 2006, 25(6): 1396-1405 [15] Fujiwara Y, Kono M, Ito A, Ito M.Anthocyanins in perilla plants and dried leaves[J]. Phytochemistry, 2018, 147: 158-166 [16] He F, Chen W K, Yu K J, Ji X N, Duan C Q, Reeves M J, Wang J.Molecular and biochemical characterization of the UDP-glucose: Anthocyanin 5-O-glucosyltransferase from Vitis amurensis[J]. Phytochemistry, 2015, 117: 363-372 [17] Jánváry L, Hoffmann T, Pfeiffer J, Hausmann L, Töpfer R, Fischer T C, Schwab W.A double mutation in the anthocyanin 5-O-glucosyltransferase gene disrupts enzymatic activity in Vitis vinifera L[J]. Journal of Agricultural and Food Chemistry, 2009, 57(9): 3512-3518 [18] Boss P K, Davies C, Robinson S P.Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv shiraz grape berries and the implications for pathway regulation[J]. Plant Physiology, 1996, 111(4): 1059-1066 [19] Kobayashi S, Ishimaru M, Hiraoka K, Honda C.Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis[J]. Planta, 2002, 215(6): 924-933 [20] Kobayashi S, Ishimaru M, Ding C K, Yakushiji H, Goto N.Comparison of UDP-glucose: Flavonoid3-O-glucosyltransferase (UFGT) gene sequence between white grapes (Vitis vinifera) and theirs ports with red skin[J]. Plant Science, 2001, 160(3): 543-550 [21] 王军, 于淼. 葡萄次生代谢UDP-糖基转移酶研究进展[J]. 园艺学报, 2010, 37(1): 141-150 [22] Sun L, Fan X, Zhang Y, Jiang J, Sun H, Liu C.Transcriptome analysis of genes involved in anthocyanins biosynthesis and transport in berries of black and white spine grapes (Vitis davidii)[J]. Hereditas, 2016, 153: 17 [23] Kokubo T, Ambe-Ono Y, Nakamura M, Ishida H, Yamakawa T, Kodama T.Promotive effect of auxins on UDP-glucose: Flavonol glucosyltransferase activity in Vitis sp. Cell cultures[J]. Journal of Bioscience and Bioengineering, 2001, 91(6): 564-569 [24] Afifi M, Ei-Kereamy A, Legrand Ⅴ, Chervin C, Monje M-C, Nepveu F, Roustan J-P.Control of anthocyanin biosynthesis pathway gene expression by eutypine, a toxin from Eutypa Iata in grape cell tissue cultures[J]. Journal of Plant Physiology, 2003, 160(8): 971-975 [25] De Rosas Ⅰ, Ponce M T, Malovini E, DEIS L, Cavagnaro B, Cavagnaro P.Loss of anthocyanins and modification of the anthocyanin profiles in grape berries of Malbec and Bonarda grown under high temperature econditions[J]. Plant Science, 2017, 258: 137-145 [26] Zhao Y, Zhao X, Zhao S, Han N.A novel bud sport from the ‘Benitaka’ table grape cultivar (Vitis vinifera L.) improves sugar and anthocyanin accumulation at the berry ripening stage[J]. South African Journal of Botany, 2015, 97: 111-116 [27] 赖呈纯, 范丽华, 黄贤贵, 谢鸿根. 刺葡萄幼胚愈伤组织诱导及其高产原花青素细胞系筛选[J]. 植物生理学报, 2014, 50(11): 1683-1691 [28] 邢桂春, 张成岗, 魏汉东, 贺福初. 采用RACE技术获得全长人新基因MAGE-D1[J]. 中国生物化学与分子生物学报, 2001, 17(2): 203-208 [29] Kumar S, Stecher G, Tamura K.MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874 [30] Lai C C, Pan H, Huang X G, Fan L H, Duan C Q, Li S Z.Validation of reference genes for gene expression analysis of response to anthocyanin induction in cell cultures of Vitis davidii (Rom. Caill.) Foëx[J]. In Vitro Cellular & Developmental Biology -Plant, 2018, 54(6): 642-657 [31] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt Method[J]. Methods, 2001, 25(4): 402-408 [32] He F, Mu L, Yan G L, Liang N N, Pan Q H, Wang J, Reeves M J, Duan C Q.Biosynthesis of anthocyanins and their regulation in colored grapes[J]. Molecules, 2010, 15(12): 9057-9091 [33] Wang L, Sun X, Weiszmann J, Weckwerth W.System-level and granger network analysis of integrated proteomic and metabolomic dynamics identifies key points of grape berry development at the interface of primary and secondary metabolism[J]. Frontiers in Plant Science, 2017, 8: 1066 [34] Georgiev V, Ananga A, Tsolova V.Recent advances and uses of grape flavonoids as nutraceuticals[J]. Nutrients, 2014, 6(1): 391-415 [35] Giovinazzo G, Grieco F.Functional properties of grape and wine polyphenols[J]. Plant Foods for Human Nutrition, 2015, 70(4): 454-462 [36] Ferreiraa Ⅴ, Fernandes F, Carrasco D, Hernandez M G, Pinto-Carnide O, Arroyo-García R, Andrade P, Valentão P, Falco Ⅴ, Castroa Ⅰ.Spontaneous variation regarding grape berry skin color: A comprehensive study of berry development by means of biochemical and molecular markers[J]. Food Research International, 2017, 97: 149-161 [37] Peppi M C, Walker M A, Fidelibus M W.Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries[J]. Vitis, 2008, 47(1): 11-14 [38] Katayama-Ikegami A, Sakamoto T, Shibuya K, Katayama T, Gao-Takai M.Effects of abscisic acid treatment on berry coloration and expression of flavonoid biosynthesis genes in grape[J]. American Journal of Plant Sciences, 2016, 7(9): 1325-1336 [39] Kondo S, Tomiyama H, Rodyoung A, Okawa K, Ohara H, Sugaya S, Terahara N, Hirai N.Abscisic acid metabolism and anthocyanin synthesis in grape skin are affected by light emitting diode (LED) irradiation at night[J]. Journal of Plant Physiology, 2014, 171(10): 823-829 [40] 俞信光, 刘双双, 冯亚斌, 吴月燕, 王忠华. 有机基质栽培对巨峰葡萄花色苷合成基因表达的影响[J]. 核农学报, 2016, 30(11): 2133-2143 [41] Villegas D, Handford M, Alcalde J A, Perez-Donoso A.Exogenous application of pectin-derived oligosaccharides to grape berries modifies anthocyanin accumulation, composition and gene expression[J]. Plant Physiology and Biochemistry, 2016, 104: 125-133 [42] Olivares D, Contreras C, Muñoz Ⅴ, Rivera S, González-Agüero M, Retamales J, Defilippi B G.Relationship among color development, anthocyanin and pigmentrelated gene expression in ‘Crimson Seedless’ grapes treated with abscisic acid and sucrose[J]. Plant Physiology and Biochemistry, 2017, 115: 286-297 |